JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 1, 011001 (2013) doi:10.7567/JJAPCP.1.011001

Effect of Types of Ga/Si(111) Reconstructed Structure on Growth Morphology of GaSb Island

Ryuto Machida1, Ryusuke Toda1, Keisuke Yoshiki1, Shinsuke Hara1, Katsumi Irokawa2, Hirofumi Miki2, Akira Kawazu3, Hiroki I. Fujishiro1

  1. 1Faculty of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
  2. 2Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
  3. 3Faculty of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
  • Received January 15, 2013
  • PDF (2.1 MB) |

Abstract

The effect of several types of the Ga/Si(111) reconstructed structure, which is used as a template for epitaxial growth, on the growth morphology of GaSb islands have been studied by ultrahigh-vacuum scanning tunneling microscopy and non-contact atomic force microscopy. The polygonal islands are spread over a wide surface area, although the large dome-shaped islands are locally formed on $11 \times 11$- and $6.3\sqrt{3} \times 6.3\sqrt{3} $-Ga. The growth process is also changed by the types of template Ga/Si(111) surface. It is suggested that initial growth state affects the growth morphology and process of GaSb island.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 T. Tatsumi, K. Tanabe, K. Watanabe, S. Iwamoto, and Y. Arakawa: J. Appl. Phys. 112 (2012) 033107.
  2. 2 A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu: Opt. Express 20 (2012) 22181.
  3. 3 G. Balakrishnan, A. Jallipalli, P. Rotella, S. Huang, A. Khoshakhlagh, A. Amtout, S. Krishna, L. R. Dawson, and D. L. Huffaker: IEEE J. Sel. Top. Quantum Electron. 12 (2006) 1636.
  4. 4 M. Jo, K. Ishida, N. Yasuhara, Y. Sugawara, K. Kawamoto, and S. Fukatsu: Appl. Phys. Lett. 86 (2005) 103509.
  5. 5 Y. Nakamura, T. Miwa, and M. Ichikawa: Nanotechnology 22 (2011) 265301.
  6. 6 Y. Nakamura, T. Sugimoto, and M. Ichikawa: J. Appl. Phys. 105 (2009) 014308.
  7. 7 K. Akahane, N. Yamamoto, S. Gozu, A. Ueta, and N. Ohtani: J. Cryst. Growth 283 (2005) 297.
  8. 8 N. Yamamoto, K. Akahane, S. Gozu, A. Ueta, N. Ohtani, and M. Tsuchiya: Jpn. J. Appl. Phys. 46 (2007) 2401.
  9. 9 S. Hara, R. Machida, K. Yoshiki, K. Irokawa, H. Miki, A. Kawazu, and H. I. Fujishiro: Phys. Status Solidi C, (in press).
  10. 10 M. Y. Lai and Y. L. Wang: Phys. Rev. B 64 (2001) 241404.
  11. 11 R. G. Ryland, S. Hasegawa, and E. D. Williams: Surf. Sci. 345 (1996) 222.
  12. 12 A. Kawazu and H. Sakama: Phys. Rev. B 37 (1988) 2704.
  13. 13 M. Y. Lai and Y. L. Wang: Phys. Rev. B 61 (2000) 12608.
  14. 14 S. Hara, K. Fuse, R. Machida, K. Yagishita, K. Irokawa, H. Miki, A. Kawazu, and H. I. Fujishiro: Jpn. J. Appl. Phys. 50 (2011) 08LB03.
  15. 15 S. Hara, R. Machida, K. Yagishita, K. Irokawa, H. Miki, A. Kawazu, and H. I. Fujishiro: Jpn. J. Appl. Phys. 51 (2012) 08KB01.
  16. 16 Y. Kusumi, K. Fujita, and M. Ichikawa: Surf. Sci. 372 (1997) 28.
  17. 17 M. Otsuka and T. Ichikawa: Jpn. J. Appl. Phys. 24 (1985) 1103.
  18. 18 S. Hara, R. Machida, K. Fuse, K. Yagishita, K. Irokawa, H. Miki, A. Kawazu, and H. I. Fujishiro: Abstr. 11th Int. Conf. Atomically Controlled Surfaces, Interfaces and Nanostructure, 2011, p. 258.