JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 1, 011002 (2013) doi:10.7567/JJAPCP.1.011002

Expression of Tumor Suppressors PTEN and TP53 in Isogenic Glioblastoma U-251MG Cells Affects Cellular Mechanical Properties — An AFM-Based Quantitative Investigation

Alexandre Berquand1, Hella-Monika Kuhn2, Andreas Holloschi2, Jan Mollenhauer3, Petra Kioschis2

  1. 1Bruker Nano GmbH, Oestliche Rheinbrueckenstrasse, Karlsruhe, Germany
  2. 2University of Applied Sciences Mannheim, Institute of Molecular and Cell Biology, Mannheim, Germany
  3. 3University of Southern Denmark, Lundbeckfonden Center of Excellence NanoCAN, Institute for Molecular Medicine, Odense C, Denmark
  • Received January 15, 2013
  • PDF (898 KB) |

Abstract

Glioblastoma is the most common and malign form of brain cancer that is highly resistant to therapy and particularly hard to cure since the blood-barrier is not very permeable to drugs. Moreover, a surgery is always highly risky. Thus, there is a real need to develop technique enabling accurate identification of potentially tumor cells at an early stage. It is getting well established that cancer cells are usually softer than their normal homologues and Atomic Force Microscopy (AFM) has proven itself over the last decade to be a tool of choice to characterize cells mechanical properties. Among the various AFM techniques, Force Spectroscopy (FS), especially Force Volume (FV) is the most commonly used. In the present study, AFM has been used to successfully characterize malignant and modified less malignant forms of glioblastoma U-251MG isogenic cells, using FV and Peak Force Tapping (PFT), a newly released AFM mode. Although both modes are quantitative and easy to use, PFT appears as the most relevant. Benefits and drawbacks of both techniques are discussed.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 G. Binnig, C. F. Quate, and C. Gerber: Phys. Rev. Lett. 56 (1986) 930.
  2. 2 Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings: Surf. Sci. Lett. 290 (1993) L688.
  3. 3 U. G. Hofmann, C. Rotsch, W. J. Parak, and M. Radmacher: J. Struct. Biol. 119 (1997) 84.
  4. 4 K. J. Van Vliet, G. Bao, and S. Suresh: Acta Mater. 51 (2003) 5881.
  5. 5 G. Y. H. Lee and C. T. Lim: Trends Biotechnol. 25 (2007) 111.
  6. 6 H. W. Wu, T. Kuhn, and V. T. Moy: Scanning 20 (1998) 389.
  7. 7 C. Rotsch and M. Radmacher: Biophys. J. 78 (2000) 520.
  8. 8 I. Sokolov, S. Iyer, and C. D. Woodworth: Nanomedicine 2 (2006) 31.
  9. 9 I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński: J. Biochem. Biophys. Methods 66 (2006) 1.
  10. 10 D. Weihs, T. G. Mason, and M. A. Teitell: Phys. Fluids 19 (2007) 103102.
  11. 11 A. E. Pelling, D. W. Dawson, D. M. Carreon, J. J. Christiansen, R. R. Shen, M. A. Teitell, and J. K. Gimzewski: Nanomedicine 3 (2007) 43.
  12. 12 C. Callies, J. Fels, I. Liashkovich, K. Kliche, P. Jeggle, K. Kusche-Vihrog, and H. Oberleithner: J. Cell Sci. 124 (2011) 1936.
  13. 13 A. Fuhrmann, J. R. Staunton, V. Nandakumar, N. Banyai, P. C. W. Davies, and R. Ros: Phys. Biol. 8 (2011) 015007.
  14. 14 H. Yamaguchi and J. Condeelis: Biochim. Biophys. Acta 1773 (2007) 642.
  15. 15 I. Ramis-Conde, D. Drasdo, A. R. A. Anderson, and M. A. J. Chaplain: Biophys. J. 95 (2008) 155.
  16. 16 E. Canetta, M. Mazilu, A. De Luca, A. Carruthers, K. Dholakia, S. Neilson, and H. Sargeant: Biorheology 42 (2005) 321.
  17. 17 B. Chen, Q. Wang, and L. Han: Scanning 26 (2004) 162.
  18. 18 Q. S. Li, G. Y. H. Lee, C. N. Ong, and C. T. Lim: Biochem. Biophys. Res. Commun. 374 (2008) 609.
  19. 19 S. Moreno-Flores, R. Benitez, M. dM Vivanco, and J. L. Toca-Herrera: Nanotechnology 21 (2010) 445101.
  20. 20 E. C. Faria, N. Ma, E. Gazi, P. Gardner, M. Brown, N. W. Clarke, and R. D. Snook: Analyst (Lond.) 133 (2008) 1498.
  21. 21 X. Cai, X. Xing, J. Cai, Q. Chen, S. Wu, and F. Huang: Micron 41 (2010) 257.
  22. 22 M. Li, L. Liu, N. Xi, Y. Wang, Z. Dong, O. Tabata, X. Xiao, and W. Zhang: Biochem. Biophys. Res. Commun. 404 (2011) 689.
  23. 23 M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A. Z. Hrynkiewicz: Biophys. J. 28 (1999) 312.
  24. 24 S. E. Cross, Y. S. Jin, J. Y. Rao, and J. K. Gimzewski: Nanotechnology 2 (2007) 780.
  25. 25 E. M. Darling, S. Zauscher, J. A. Block, and F. Guilak: Biophys. J. 92 (2007) 1784.
  26. 26 M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher: Biophys. J. 90 (2006) 2994.
  27. 27 S. Sharma, C. Santiskulvong, L. A. Bentolila, J. Y. Rao, O. Dorigo, and J. K. Gimzewski: Nanomed. Namotechnology Biol. Med. 8 (2012) 757.
  28. 28 A. N. Ketene, E. M. Schmelz, P. C. Roberts, and M. Agah: Nanomed. Namotechnology Biol. Med. 8 (2012) 93.
  29. 29 M. Lekka and P. Laidler: Nat. Nanotechnol. 4 (2009) 72.
  30. 30 J. Hertz: für reine und angewandte Mathematik 92 (1881) 156.
  31. 31 M. Khasraw and A. B. Lassman: Curr. Oncol. Rep. 12 (2010) 26.
  32. 32 R.-Y. Bai, V. Staedtke, and G. J. Riggins: Trends Mol. Med. 17 (2011) 301.
  33. 33 J. Adamcik, A. Berquand, and R. Mezzenga: Appl. Phys. Lett. 98 (2011) 193701.
  34. 34 A. Berquand, C. Roduit, S. Kasas, A. Holloschi, L. Ponce, and M. Hafner: Microscopy Today 6 (2010) 24.
  35. 35 G. Pletikapić, A. Berquand, T. M. Radić, and V. Svetličić: J. Phycol. 48 (2012) 174.
  36. 36 C. Heu, A. Berquand, C. Elie-Caille, and L. Nicod: J. Struct. Biol. 178 (2012) 1.
  37. 37 M. Gossen, S. Freundlieb, G. Bender, G. Muller, W. Hillen, and H. Bujard: Science 268 (1995) 1766.
  38. 38 I. N. Sneddon: Int. J. Eng. Sci. 3 (1965) 47.
  39. 39 S. Belikov, N. Erina, L. Huang, C. Su, C. Prater, S. Magonov, V. Ginzburg, B. McIntyre, H. Lakrout, and G. Meyers: J. Vac. Sci. Technol. B 27 (2009) 984.
  40. 40 A. Holloschi, H. M. Kuhn, C. Müller, M. Worf, M. Rauen, T. Röder, W. Kessler, J. Mollenhauer, and P. Kioschis: Curr. Micr. Contr. Adv. Sci. Technol. 1 (2012) 103.
  41. 41 Q. S. Li, G. Y. H. Lee, C. N. Ong, and C. T. Lim: Biochem. Biophys. Res. Commun. 374 (2008) 609.
  42. 42 A. Fuhrmann, J. R. Staunton, V. Nandakumar, N. Banyai, P. C. W. Davies, and R. Ros: Phys. Biol. 8 (2011) 015007.