JJAP Conference Proceedings

JJAP Conf. Proc. 1, 011003 (2013) doi:10.7567/JJAPCP.1.011003

Size Estimation of Biological Ink Particles Dispersed in Liquids Using Atomic Force Microscopy

Toshihiko Matsuura1, Takamine Kato1, Makoto Horii1, Shohei Todo1, Ken-ichi Minato2, Takashi Ueno3

  1. 1Laboratory of Biotechnology, Hokkaido University of Education, Hakodate, Hokkaido 040-8567, Japan
  2. 2Department of Electrical and Electronic Engineering, Hakodate National College of Technology, Hakodate, Hokkaido 042-8501, Japan
  3. 3Department of Material and Environmental Engineering, Hakodate National College of Technology, Hakodate, Hokkaido 042-8501, Japan
  • Received January 15, 2013
  • PDF (1.4 MB) |


The size distributions of size-controlled ink particles isolated from the ink sacs of squid and cuttlefish were studied by atomic force microscopy (AFM). Topological images indicated that the squid ink particles deposited on mica were not spherical but instead were hemisphere-like. From the heights and widths of the hemisphere-like structures on mica, the diameters of the squid ink particles dispersed in aqueous suspension were estimated to be approximately $300$ nm, close to that obtained from dynamic light scattering analysis. The estimated values were almost the same regardless of the spring constant of AFM cantilevers. A precise estimation was also achieved for the cuttlefish ink particles. The estimation method suggested in the present study would be a valid technique for precisely measuring the size distribution of biological particles by AFM.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 H. S. Mason, D. J. E. Ingram, and B. Allen: Arch. Biochem. Biophys. 86 (1960) 225.
  2. 2 M. S. Blois, A. B. Zahlan, and J. E. Maling: Biophys. J. 4 (1964) 471.
  3. 3 N. Kollias, R. M. Sayre, L. Zeise, and M. R. Chedekel: J. Photochem. Photobiol. B 9 (1991) 135.
  4. 4 M. R. Chedekel, B. L. Murr, and L. Zeise: Pigm. Cell Res. 5 (1992) 143.
  5. 5 A. López-Montes, R. Blanc, T. Espejo, A. Navalón, and J. L. Vílchez: Microchem. J. 93 (2009) 121.
  6. 6 T. Ueno, Y. Taya, and I. Shimono: Japan Patent 4605354 (2010) [in Japanese].
  7. 7 T. Matsuura, M. Hino, S. Akutagawa, Y. Shimoyama, T. Kobayashi, Y. Taya, and T. Ueno: Biosci. Biotechnol. Biochem. 73 (2009) 2790.
  8. 8 T. Ueno, K. Ara, Y. Taya, I. Shimono, and T. Kobayashi: Nippon Suisan Gakkai Shi 74 (2008) 259 [in Japanese].
  9. 9 T. Matsuura, T. Kato, K. Minato, and T. Ueno: Jpn. J. Appl. Phys. 51 (2012) 06FG07.
  10. 10 C. M. Hoo, N. Starostin, P. West, and M. L. Mecartney: J. Nanopart. Res. 10 (2008) 89.
  11. 11 Y. Liu and J. D. Simon: Pigm. Cell Res. 16 (2003) 606.
  12. 12 W.-F. Xue, S. W. Homans, and S. E. Radford: Protein Eng. Des. Sel. 22 (2009) 489.
  13. 13 T. Matsuura, K. Kobayashi, H. Tanaka, T. Matsumoto, and T. Kawai: Jpn. J. Appl. Phys. 43 (2004) 4599.
  14. 14 T. Matsuura, H. Tanaka, T. Matsumoto, and T. Kawai: Biosci. Biotechnol. Biochem. 70 (2006) 300.
  15. 15 T. Kanno, T. Yamada, H. Iwabuki, H. Tanaka, S. Kuroda, K. Tanizawa, and T. Kawai: Anal. Biochem. 309 (2002) 196.
  16. 16 C. M. R. Clancy and J. D. Simon: Biochemistry 40 (2001) 13353.
  17. 17 S. Liu, T. Zhu, R. Hu, and Z. Liu: Phys. Chem. Chem. Phys. 4 (2002) 6059.
  18. 18 Y. Liu and J. D. Simon: Pigm. Cell Res. 16 (2003) 72.
  19. 19 C. M. R. Clancy, J. B. Nofsinger, R. K. Hanks, and J. D. Simon: J. Phys. Chem. B 104 (2000) 7871.
  20. 20 B. Bhushan: Springer Handbook of Nanotechnology (Springer, Berlin/Heidelberg, 2004).
  21. 21 F. Moreno-Herrero, J. Colchero, and A. M. Baró: Ultramicroscopy 96 (2003) 167.
  22. 22 M. Sasou, S. Sugiyama, T. Yoshino, and T. Ohtani: Langmuir 19 (2003) 9845.