JJAP Conference Proceedings

JJAP Conf. Proc. 1, 011005 (2013) doi:10.7567/JJAPCP.1.011005

Toward a Quantitative Understanding of the Effect of Tip Shape on Measurements of Surface Roughness by AFM Based on Computer Simulations

Chunmei Wang, Hiroshi Itoh

  1. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
  • Received January 10, 2013
  • PDF (1.3 MB) |

Abstract

Measurements of surface roughness by atomic force microscope (AFM) may contain an important error from the finite size of AFM tips. The error is rarely evaluated in experiments due to the lack of a quantitative mathematical description of the effect of tip shape on measurements of the roughness of three-dimensional (3D) surfaces. By introducing a parameter called the normalized tip width, we determined approximate generalized formulas that describe the dependencies of three main types of AFM roughness measurements on the parameters of a tip–surface system for Gaussian rough surfaces based on simulations. General models or a practical database may be extracted after establishment of formulas for more types of surfaces.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 W.-Z. Wang, H. Chen, Y.-Z. Hu, and H. Wang: Tribology Int. 39 (2006) 522.
  2. 2 F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli: Phys. Rev. Lett. 104 (2010) 033902.
  3. 3 X. B. Zhou and J. Th. M. De Hosson: J. Mater. Res. 10 (1995) 1984.
  4. 4 D.-L. Liu, J. Martin, and N. A. Burnham: Appl. Phys. Lett. 91 (2007) 043107.
  5. 5 J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles: Appl. Phys. Lett. 83 (2003) 4116.
  6. 6 P. Strasser, F. Robin, C. F. Carlström, R. Wüest, R. Kappeler, and H. Jäckel: Nanotechnology 18 (2007) 405703.
  7. 7 J. S. Villarrubia: J. Res. Natl. Inst. Stand. Technol. 102 (1997) 425.
  8. 8 H. Itoh, T. Fujimoto, and S. Ichimura: Rev. Sci. Instrum. 77 (2006) 103704.
  9. 9 C. Wang, H. Itoh, Y. Homma, J. Sun, J. Hu, and S. Ichimura: Jpn. J. Appl. Phys. 47 (2008) 6128.
  10. 10 D. Tranchida, S. Piccarolo, and R. A. C. Deblieck: Meas. Sci. Technol. 17 (2006) 2630.
  11. 11 K. L. Westra and D. J. Thomson: J. Vac. Sci. Technol. B 13 (1995) 344.
  12. 12 Y. Chen and W. Huang: Meas. Sci. Technol. 15 (2004) 2005.
  13. 13 D. L. Sedin and K. L. Rowlen: Appl. Surf. Sci. 182 (2001) 40.
  14. 14 J. A. Greenwood and J. B. P. Williamson: Proc. R. Soc. London, Ser. A 295 (1966) 300.
  15. 15 P. R. Nayak: Wear 26 (1973) 305.
  16. 16 P. Abrahamsen: Technical Report Norwegian Computing Centre 917 (1997) 1.
  17. 17 T. Yatsui, K. Hirata, Y. Tabata, W. Nomura, T. Kawazoe, M. Naruse, and M. Ohtsu: Nanotechnology 21 (2010) 355303.
  18. 18 G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, and A. Llebaria: Phys. Rev. B 25 (1982) 2315.
  19. 19 J. Laverdant, S. Buil, B. Bérini, and X. Quélin: Phys. Rev. B 77 (2008) 165406.
  20. 20 ISO 25178-2:2012: Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters [http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=42785].
  21. 21 Y. Z. Hu and K. Tonder: Int. J. Mach. Tools Manuf. 32 (1992) 83.
  22. 22 J.-J. Wu: Tribology Int. 37 (2004) 339.
  23. 23 L. S. Dongmo, J. S. Villarrubia, S. N. Jones, T. B. Renegar, M. T. Postek, and J. F. Song: Ultramicroscopy 85 (2000) 141.
  24. 24 H. Skulason and C. D. Frisbie: Langmuir 16 (2000) 6294.
  25. 25 J. A. Ogilvy and J. R. Foster: J. Phys. D 22 (1989) 1243.
  26. 26 C. Wang and H. Itoh: Meas. Sci. Technol. 24 (2013) 035401.