JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011001 (2014) doi:10.7567/JJAPCP.2.011001

Assessment of several calculation methods for positron lifetime

Wenshuai Zhang1,2, Jiandang Liu1,2, Jie Zhang3, Shijuan Huang1,2, Jun Li1,2, Bangjiao Ye1,2

  1. 1Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
  2. 2State Key Laboratory of Particle Detection and Electronics (IHEP & USTC), USTC, Hefei 230026, China
  3. 3Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
  • Received March 15, 2014
  • PDF (557 KB) |

Abstract

We test seven different local density approximation (LDA) or generalized gradient approximation (GGA) forms of the enhancement factor and correlation potential for positron-lifetime calculations by using a useful database of experimental values based on the all-electrons approach: full-potential linearized augmented plane wave (FLAPW). To make a numerical assessment of these calculation methods, we use the mean-deviation and the reduced chi-squared as model selection criterions. We find that the tworecent LDA forms of the enhancement factor make distinct improvements upon the calculations for positron-lifetime compared with the older LDA form proposed by Arponen and Pajanne. However, all the LDA forms are still disfavored by the experimental data compared with the GGA forms. In addition, the two recent GGA forms do not yield any improvement when compared to experimental data over the original from given by Barbiellini et al., which is found to give the best agreement.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994).
  2. 2 R. M. Nieminen, E. Boroński, and L. J. Lantto, Phys. Rev. B 32, 1377 (1985).
  3. 3 E. Boroński and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986); M. J. Puska, S. Mäkinen, M. Manninen, and R. M. Nieminen, Phys. Rev. B 39, 7666 (1989).
  4. 4 M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995).
  5. 5 X.-G. Wang and H. Zhang, J. Phys. Cond. Mat. 2, 7275 (1990).
  6. 6 H. Takenaka and D. J. Singh, Phys. Rev. B 77, 155132 (2008).
  7. 7 J. Kuriplach and B. Barbiellini, Phys. Rev. B 89, 155111 (2014).
  8. 8 E. Boroński, Nukleonika 55, 9 (2010).
  9. 9 J. M. Campillo Robles, E. Ogando, and F. Plazaola, J. Phys. Cond. Mat. 19, 176222 (2007); J. M. Campillo-Robles, E. Ogando, and F. Plazaola, Solid State Sci. 14, 982 (2012); M. Mizuno, H. Araki, and Y. Shirai, Mater. Trans. 45, 1964 (2004); P. A. Sterne, J. E. Pask, and B. M. Klein, Appl. Surf. Sci. 149, 238 (1999); F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013).
  10. 10 J. Arponen, P. Hautojärvi, R. Nieminen, and E. Pajanne, J. Phys. F 3, 2092 (1973); W. Brandt and J. Reinheimer, Phys. Lett. A 35, 109 (1971).
  11. 11 D. Singh, Phys. Rev. B 43, 6388 (1991).
  12. 12 J. Arponen and E. Pajanne, Ann. Phys. 121, 343 (1979); J. Arponen and E. Pajanne, Positron Annihilation: Proceedings of the 7th International Conference on Positron Annihilation (World Scientific, Singapore, 1985) p. 21.
  13. 13 B. Barbiellini, M. J. Puska, T. Torsti, and R. M. Nieminen, Phys. Rev. B 51, 7341 (1995); B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, and R. M. Nieminen, Phys. Rev. B 53, 16201 (1996).
  14. 14 H. Stachowiak and J. Lach, Phys. Rev. B 48, 9828 (1993).
  15. 15 N. D. Drummond, P. López Ríos, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett. 107, 207402 (2011).
  16. 16 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  17. 17 J. M. Campillo Robles and F. Plazaola, Defect Diffus. Forum 213–215, 141 (2003).
  18. 18 M. Alatalo, B. Barbiellini, M. Hakala, H. Kauppinen, T. Korhonen, M. J. Puska, K. Saarinen, P. Hautojärvi, and R. M. Nieminen, Phys. Rev. B 54, 2397 (1996).