JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011101 (2014) doi:10.7567/JJAPCP.2.011101

Cu precipitates in hydrogen ion irradiated Fe–0.3%Cu alloy investigated by positron annihilation spectroscopy

Shuoxue Jin1, Xingzhong Cao1, Peng Zhang1, Eryang Lu1, Liping Guo2, RunSheng Yu1, Baoyi Wang1

  1. 1Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  2. 2Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
  • Received March 17, 2014
  • PDF (617 KB) |

Abstract

The formation of Cu precipitates in Fe–0.3%Cu binary model alloy after hydrogen ion irradiation at 400 °C was investigated by positron annihilation spectroscopy using a slow positron beam. In order to study the effect of elevated temperature on the Cu precipitates, annealing treatment at 400 °C in Fe–0.3%Cu alloy was also investigated. The S-parameters of specimens increased with increasing irradiation dose, especially in the damage peak region. H+ implantation produced a large number of vacancy-type defects in Fe–0.3%Cu alloy. Compared to the unirradiated samples, the irradiated specimens show an overall major increase in the W parameter values. The experimental results indicate that Cu precipitates formed easily under a low irradiation dose at elevated temperature. No obvious Cu precipitates formed when unirradiated Fe–0.3%Cu alloy was annealed for 2 h at 400 °C.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 Y. Nishiyama, K. Onizawa, M. Suzuki, J. W. Anderegg, Y. Nagai, T. Toyama, M. Hasegawa, and J. Kameda, Acta Mater. 56, 4510 (2008).
  2. 2 Q. Xu, T. Yoshiie, and K. Sato, Phys. Rev. B 73, 134115 (2006).
  3. 3 M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, and C. H. de Novion, J. Nucl. Mater. 245, 224 (1997).
  4. 4 Q. Xu and T. Yoshiie, Philos. Mag. 91, 3716 (2011).
  5. 5 X. Z. Cao, P. Zhang, Q. Xu, K. Sato, H. Tsuchida, G. D. Cheng, H. B. Wu, X. P. Jiang, R. S. Yu, B. Y. Wang, and L. Wei, J. Phys.: Conf. Ser. 443, 012017 (2013).
  6. 6 G. R. Odette and G. E. Lucas, Radiat. Eff. Defects Solids 144, 189 (1998).
  7. 7 W. J. Phythian and C. A. English, J. Nucl. Mater. 205, 162 (1993).
  8. 8 K. Fukuya, K. Ohno, H. Nakata, S. Dumbill, and J. M. Hyde, J. Nucl. Mater. 312, 163 (2003).
  9. 9 R. G. Carter, N. Soneda, K. Dohi, J. M. Hyde, C. A. English, and W. L. Server, J. Nucl. Mater. 298, 211 (2001).
  10. 10 T. Yoshiie, Q. Xu, and K. Sato, Nucl. Instrum. Methods Phys. Res., Sect. B 303, 37 (2013).
  11. 11 Y. Nagai, Z. Tang, M. Hasegawa, T. Kanai, and M. Saneyasu, Phys. Rev. B 63, 134110 (2001).
  12. 12 F. Hori, S. Tanaka, E. Kuramoto, and A. Iwase, Nucl. Instrum. Methods Phys. Res., Sect. B 245, 180 (2006).
  13. 13 G. S. Was, J. T. Busby, T. Allen, E. A. Kenik, A. Jenssen, S. M. Bruemmer, J. Gan, A. D. Edwards, P. M. Scott, and P. L. Andreson, J. Nucl. Mater. 300, 198 (2002).
  14. 14 Web [http://www.srim.org/].
  15. 15 J. Qiu, Y. Xin, X. Ju, L. P. Guo, B. Y. Wang, Y. R. Zhong, Q. Y. Huang, and Y. C. Wu, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3162 (2009).
  16. 16 R. S. Wang, X. B. Liu, A. Ren, J. Jiang, C. L. Xu, P. Huang, Y. C. Wu, C. H. Zhang, and X. T. Wang, Nucl. Instrum. Methods Phys. Res., Sect. B 307, 545 (2013).
  17. 17 J. Qiu, X. Ju, Y. Xin, S. Liu, and B. Y. Wang, J. Nucl. Mater. 411, 20 (2011).
  18. 18 Y. Tateyama and T. Ohno, Phys. Rev. B 67, 174105 (2003).
  19. 19 Z. Tang, M. Hasegawa, Y. Nagai, and M. Saito, Phys. Rev. B 65, 195108 (2002).
  20. 20 A. Barbu, M. H. Mathon, F. Maury, J. F. Belliard, B. Beuneu, and C. H. de Novion, J. Nucl. Mater. 257, 206 (1998).