JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011103 (2014) doi:10.7567/JJAPCP.2.011103

In situ observation of damage evolution in polycarbonate under ion irradiation with positrons

Hidetsugu Tsuchida1,2, Hironori Tsutsumi2, Masafumi Akiyoshi2, Takeo Iwai3

  1. 1Quantum Science and Engineering Center, Kyoto University, Uji, Kyoto 611-0011, Japan
  2. 2Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530, Japan
  3. 3Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
  • Received July 01, 2014
  • PDF (826 KB) |


We report β+–γ coincidence positron annihilation lifetime spectroscopy of in situ observation of ion damage in polycarbonate under irradiation by MeV-energy H+ ions. Ion damage was investigated from changes in the relative intensity of the long-lived ortho-positronium pick-off annihilation lifetime component measured under irradiation and non-irradiation conditions. It was found that at fluences of less than 1015 ions·cm−2 the relative intensity of this component during irradiation was significantly reduced compared to that after irradiation. This reduction disappears at fluences higher than 1015 ions·cm−2. Results suggest that at fluences up to 1015 ions·cm−2, transient damage structures are formed under irradiation.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 T. Venkatesan, Nucl. Instrum. Methods Phys. Res., Sect. B 7–8, 461 (1985).
  2. 2 L. S. Wielunski, R. A. Clissold, E. Yap, D. G. McCulloch, D. R. McKenzie, and M. V. Swain, Nucl. Instrum. Methods Phys. Res., Sect. B 127–128, 698 (1997).
  3. 3 J. Zhang, J. Kang, P. Hu, and Q. Meng, Appl. Surf. Sci. 253, 5436 (2007).
  4. 4 H. Tsuchida, T. Iwai, M. Awano, M. Kishida, I. Katayama, S. C. Jeong, H. Ogawa, N. Sakamoto, M. Komatsu, and A. Itoh, J. Phys.: Condens. Matter 19, 136205 (2007).
  5. 5 H. Tsuchida, T. Iwai, S. Kasai, H. Tanaka, N. Oshima, R. Suzuki, T. Yoshiie, and A. Itoh, J. Phys.: Conf. Ser. 262, 012060 (2011).
  6. 6 T. Iwai and H. Tsuchida, Nucl. Instrum. Methods Phys. Res., Sect. B 285, 18 (2012).
  7. 7 H. Tsuchida, T. Iwai, M. Awano, N. Oshima, R. Suzuki, K. Yasuda, C. Batchuluun, and A. Itoh, J. Nucl. Mater. 442, S856 (2013).
  8. 8 P. Chalermkarnnon, M. Yuga, S. Nakata, S. Kishimoto, H. Araki, and Y. Shirai, Radioisotopes 50, 576 (2001).
  9. 9 PALS-fit computer program [http://palsfit.dk/].
  10. 10 J. Zieglar, J. F. Biersack, and U. Littmark, The Transport of Ions in Matter (TRIM) Monte-Carlo Calculation Including in Computer Program SRIM Version (2008) [http://www.SRIM.org].
  11. 11 E. H. Lee, G. R. Rao, and L. K. Mansur, Radiat. Phys. Chem. 55, 293 (1999).
  12. 12 T. M. Hall, A. Wagner, and L. F. Thompson, J. Vac. Sci. Technol. 16, 1889 (1979).
  13. 13 E. H. Lee, Nucl. Instrum. Methods Phys. Res., Sect. B 151, 29 (1999).