JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011201 (2014) doi:10.7567/JJAPCP.2.011201

Correlation study between the rheological property and the free volume for ethylene vinyl acetate copolymer under melt extrusion

Yong Zhang1,2, Zhi Wang1,2, Chenhui Li1,2, Zhe Chen1,2, Pengfei Fang3

  1. 1Hubei Key Laboratory of Plasma Chemistry and New Materials, Wuhan Institute of Technology, Wuhan 430073, China
  2. 2School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, China
  3. 3School of Physics and Technology, Wuhan University, Wuhan 430072, China
  • Received March 10, 2014
  • PDF (553 KB) |

Abstract

The rheological behavior of ethylene vinyl acetate copolymers (EVA) with different vinyl acetate (VA) contents during the extrusion process was investigated by means of viscosity and positron lifetime measurements. The viscosity of EVAs in the liquid state under shearing stress initially decreased with processing time before passing through a minimum at the transition point. The variation of processing time at this transition point with extrusion temperature showed that higher extrusion temperature leads to lower viscosity and faster degradation. The relationship between the inverse of the processing time for the transition point and the corresponding process temperature suggested that the VA content is a key factor for the degradation process of EVA. The positron results indicated that the free-volume size exhibits a corresponding variation to the rheological behavior.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 G. Takidis, D. N. Bikiaris, G. Z. Papageorgiou, D. S. Achilias, and I. Sideridou, J. Appl. Polym. Sci. 90, 841 (2003).
  2. 2 Z. Chen, P. F. Fang, H. M. Wang, S. P. Zhang, and S. J. Wang, J. Appl. Polym. Sci. 101, 2022 (2006).
  3. 3 O. González, M. E. Muñoz, A. Santamaría, M. García-Morales, F. J. Navarro, and P. Partal, Eur. Polym. J. 40, 2365 (2004).
  4. 4 P. F. Fang, Z. Chen, S. P. Zhang, S. J. Wang, L. Y. Wang, and J. W. Feng, Polym. Int. 55, 312 (2006).
  5. 5 X. D. Wang, H. Q. Li, and E. Ruckenstein, Polymer 42, 9211 (2001).
  6. 6 Y. T. Sung, C. K. Kum, H. S. Lee, J. S. Kim, H. G. Yoon, and W. N. Kim, Polymer 46, 11844 (2005).
  7. 7 P. Kirkegaard, M. Eldrup, O. E. Mogensen, and N. J. Pedersen, Comput. Phys. Commun. 23, 307 (1981).
  8. 8 S. V. Canevarolo, Polym. Degrad. Stabil. 70, 71 (2000).
  9. 9 M. S. Kim, C. C. Park, S. R. Chowdhury, and G. H. Kim, J. Appl. Polym. Sci. 94, 2212 (2004).
  10. 10 F. Zhang and U. Sundararaj, Polym. Compos. 25, 535 (2004).
  11. 11 O. Bianchi, J. De N. Martins, R. Fiorio, R. V. B. Oliveira, and L. B. Canto, Polym. Test. 30, 616 (2011).