JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011202 (2014) doi:10.7567/JJAPCP.2.011202

Microstructure and surface state of plasma-treated high-density polyethylene elucidated by energy-tunable positron annihilation and water contact angle measurements

Zhe Chen1,2, Zhi Wang1,2, Qiuming Fu1,2, Zhibin Ma1,2, Pengfei Fang3, Chunqing He3

  1. 1Hubei Key Laboratory of Plasma Chemistry and New Materials, Wuhan Institute of Technology, Wuhan 430073, China
  2. 2School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, China
  3. 3School of Physics and Technology, Wuhan University, Wuhan 430072, China
  • Received March 10, 2014
  • PDF (446 KB) |


Positron gamma ray spectroscopy coupled with an energy-tunable positron beam was utilized to the study of the microstructure in polyethylene (PE) modified by the radio-frequency (RF) plasma. The energy dependence of the line-shape S parameter, a measure of the Doppler broadening of the positron radiation, confirmed that the change in the hydrophilic state of the PE surface after plasma modification was due to the altered chemical structure in the near-surface region. Moreover, only a region at a depth shallower than 700 nm was influenced by the plasma modification. The recovery in the surface hydrophobicity after plasma modification was observed through contact angle measurements. The variation of the contact angle of water can be fitted by a two-factor decay model, suggesting that the surface recovery is caused by the diffusion of two different groups.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 R. Sanchis, O. Fenollar, D. García, L. Sánchez, and R. Balart, Int. J. Adhes. Adhes. 28, 445 (2008).
  2. 2 H. Drnovská, L. Lapčík, Jr., V. Buršíková, J. Zemek, and A. M. Barros-Timmons, Colloid Polym. Sci. 281, 1025 (2003).
  3. 3 A. S. Olifirenko, I. Novak, E. Yu Rozova, N. N. Saprykina, A. G. Mitilineos, and G. K. Elyashevich, Polym. Sci. B 51, 247 (2009).
  4. 4 J. H. Lee, K. Y. Rhee, and J. H. Lee, Appl. Surf. Sci. 256, 876 (2009).
  5. 5 A. Popelka, J. Kronek, I. Novak, A. Kleinova, M. Micusik, M. Spirkova, and M. Omastova, Vacuum 100, 53 (2014).
  6. 6 S. M. Desai and R. P. Singh, Adv. Polym. Sci. 169, 231 (2004).
  7. 7 N. Zhao, Q. Xie, X. Kuang, S. Wang, Y. Li, X. Lu, S. Tan, J. Shen, X. Zhang, Y. Zhang, J. Xu, and C. C. Han, Adv. Funct. Mater. 17, 2739 (2007).
  8. 8 K. S. Siow, L. Britcher, S. Kumar, and H. J. Griesser, Plasma Processes Polym. 3, 392 (2006).
  9. 9 D. Hegemann, H. Brunner, and C. Oehr, Nucl. Instrum. Methods Phys. Res., Sect. B 208, 281 (2003).
  10. 10 S. Guruvenket, G. M. Rao, M. Komath, and A. M. Raichur, Appl. Surf. Sci. 236, 278 (2004).
  11. 11 S. Nishijima, T. Yagi, K. Hirata, Y. Kobayashi, Y. Honda, and S. Tagawa, Radiat. Phys. Chem. 58, 607 (2000).
  12. 12 J. Reece Roth, Industrial Plasma Engineering (IOP Publishing, London, 2001) 1st ed., Vol. 2, Chap. 16, p. 104.
  13. 13 Y. Kobayashi, K. Ito, T. Oka, C. Q. He, H. F. M. Mohamed, R. Suzuki, and T. Ohdaira, Appl. Surf. Sci. 255, 174 (2008).
  14. 14 P. Winberg, M. Eldrup, N. J. Pedersen, M. A. van Es, and F. H. J. Maurer, Polymer 46, 8239 (2005).
  15. 15 Z. Chen, K. Ito, H. Yanagishita, N. Oshima, R. Suzuki, and Y. Kobayashi, J. Phys. Chem. C 115, 18055 (2011).
  16. 16 O. E. Mogensen, J. Chem. Phys. 60, 998 (1974).
  17. 17 S. K. Øiseth, A. Krozer, B. Kasemo, and J. Lausmaa, Appl. Surf. Sci. 202, 92 (2002).