JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011204 (2014) doi:10.7567/JJAPCP.2.011204

Positron annihilation study of silica films templated by a cationic surfactant

Bangyun Xiong1, Wenfeng Mao1, Xiuqin Tang1, Kenji Ito2, Chunqing He1

  1. 1Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
  2. 2National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
  • Received April 03, 2014
  • PDF (728 KB) |

Abstract

Porous silica films were synthesized via a sol–gel method using tetraethyl orthosilicate with mixing hexadecyltrimethylammonium bromide (CTAB) as a structural template. Doppler broadening of positron annihilation radiation spectroscopy based on a slow positron beam and ellipsometry were applied to the study of the prepared silica films. The obtained results suggested that a nanoscopic structure change for the porous silica films takes place around 15 wt % of the CTAB loading.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, and E. W. Sheppard, J. Am. Chem. Soc. 114, 10834 (1992).
  2. 2 P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Nature 396, 152 (1998).
  3. 3 D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science 279, 548 (1998).
  4. 4 S. Tanaka, N. Nishiyama, Y. Oku, Y. Egashira, and K. Ueyama, J. Am. Chem. Soc. 126, 4854 (2004).
  5. 5 I. Honma, H. S. Zhou, D. Kundu, and A. Endo, Adv. Mater. 12, 1529 (2000).
  6. 6 C. Z. Ma, L. Han, Z. Jiang, Z. H. Huang, J. Feng, Y. Yao, and S. N. Che, Chem. Mater. 23, 3583 (2011).
  7. 7 M. P. Petkov, M. H. Weber, K. G. Lynn, K. P. Rodbell, and S. A. Cohen, Appl. Phys. Lett. 74, 2146 (1999).
  8. 8 R. S. Brusa, M. Spagolla, G. P. Karwasz, A. Zecca, G. Ottaviani, F. Corni, M. Bacchetta, and E. Carollo, J. Appl. Phys. 95, 2348 (2004).
  9. 9 C. Q. He, T. Oka, Y. Kobayashi, N. Oshima, T. Ohdaira, A. Kinomura, and R. Suzuki, Appl. Phys. Lett. 91, 024102 (2007).
  10. 10 C. Q. He, T. Oka, Y. Kobayashi, N. Oshima, T. Ohdaira, A. Kinomura, and R. Suzuki, Appl. Surf. Sci. 255, 183 (2008).
  11. 11 W. F. Mao, B. Y. Xiong, Y. Liu, and C. Q. He, Appl. Phys. Lett. 103, 031915 (2013).
  12. 12 B. Y. Xiong, W. F. Mao, J. Yue, X. S. Xu, and C. Q. He, Phys. Lett. A 378, 249 (2014).
  13. 13 P. Revol, D. Perret, F. Bertin, F. Fusalba, V. Rouessac, A. Chabli, G. Passemard, and A. Ayral, J. Porous Mater. 12, 113 (2005).
  14. 14 A. van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, AIP Conf. Proc. 218, 171 (1990).
  15. 15 K. A. Ritley, K. G. Lynn, V. J. Ghosh, D. O. Welch, and M. McKeown, J. Appl. Phys. 74, 3479 (1993).
  16. 16 K. Ito, Y. Kobayashi, and A. Nanasawa, Appl. Phys. Lett. 82, 654 (2003).
  17. 17 K. Ito and Y. Kobayashi, Acta Phys. Pol. A 107, 717 (2005).
  18. 18 L. Liszkay, C. Corbel, L. Baroux, P. Hautojärvi, M. Bayhan, A. W. Brinkman, and S. Tatarenko, Appl. Phys. Lett. 64, 1380 (1994).
  19. 19 B. Y. Xiong, W. F. Mao, X. Q. Tang, and C. Q. He, J. Appl. Phys. 115, 094303 (2014).