JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011206 (2014) doi:10.7567/JJAPCP.2.011206

Investigation on defects of Sb doped SnO thin films by positron annihilation

Wenfeng Mao1, Bangyun Xiong1, Qichao Li1, Yawei Zhou1, Kenji Ito2, Chunqing He1

  1. 1Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
  2. 2National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
  • Received June 03, 2014
  • PDF (588 KB) |

Abstract

Undoped and Sb doped tin oxide thin films were fabricated by the dip-coating technique through a propylene oxide assisted sol–gel method. Atomic force microscope measurements reveal that the grain size increased after being calcined at higher temperature; while increasing the dopant content leads to a reduction in grain size and a corresponding increase in the concentration of grain boundaries. Positron annihilation spectroscopy analysis shows the defects are reduced with increasing Sb content to 5%; however, further increasing the doping level to 10% introduces more defects to the films. At all doping levels, the defects in Sb doped tin oxide films decreases significantly upon elevating the calcination temperature.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 H.-W. Ha, K. Kim, M. de Borniol, and T. Toupance, J. Solid State Chem. 179, 702 (2006).
  2. 2 F. E. Ghodsi and J. Mazloom, Appl. Phys. A 108, 693 (2012).
  3. 3 X. Chen, C. Li, W. Shao, T. Liu, and L. Wang, J. Appl. Polym. Sci. 109, 3753 (2008).
  4. 4 C. Q. He, T. Oka, Y. Kobayashi, N. Oshima, T. Ohdaira, A. Kinomura, and R. Suzuki, Appl. Phys. Lett. 91, 024102 (2007).
  5. 5 M. P. Petkov, M. H. Weber, K. G. Lynn, K. P. Rodbell, and S. A. Cohen, Appl. Phys. Lett. 74, 2146 (1999).
  6. 6 M. M. Koebel, D. Y. Nadargi, G. Jimenez-Cadena, and Y. E. Romanyuk, ACS Appl. Mater. Interfaces 4, 2464 (2012).
  7. 7 W. Mao, B. Xiong, Y. Liu, and C. He, Appl. Phys. Lett. 103, 031915 (2013).
  8. 8 B. Xiong, W. Mao, X. Tang, and C. He, J. Appl. Phys. 115, 094303 (2014).
  9. 9 E. Shanthi, V. Dutta, A. Banerjee, and K. L. Chopra, J. Appl. Phys. 51, 6243 (1980).
  10. 10 C. H. Shek, J. K. L. Lai, and G. M. Lin, J. Phys. Chem. Solids 60, 189 (1999).
  11. 11 H. Wu, X. Cao, G. Cheng, J. Wu, J. Yang, P. Zhang, Z. Li, A. Z. M. S. Rahman, R. Yu, and B. Wang, Phys. Status Solidi A 210, 1758 (2013).