JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011207 (2014) doi:10.7567/JJAPCP.2.011207

The effect of curing agent content on photodegradation of epoxy coating studied by positron annihilation

Fuwei Liu1, Mingxi Yin1, Bangyun Xiong1, Feng Zheng1, Wenfeng Mao1, Zhe Chen2, Chunqing He1, Xipo Zhao1, Pengfei Fang1

  1. 1Department of Physics and Hubei Nuclear-Solid Physics Key Laboratory, Wuhan University, Wuhan 430072, China
  2. 2Department of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, China
  • Received May 21, 2014
  • PDF (1.5 MB) |

Abstract

The photodegradation progress of epoxy cured with polyamide and the effect of the curing agent content under UV-A irradiation have been investigated using positron annihilation spectroscopy with an energy tunable positron beam. After 88 h of irradiation, a post-cure process and the generation of carbonyl groups reduce the value of the S parameter, compared with the virgin samples. As the irradiation time increases from 208 to 399 h, the S parameter decreases, which may be due to the growth of carbonyl groups and the generation of free radicals. After 543 h of irradiation, a dead layer with very low S value appears near the sample surface probably induced by a dramatic decrease in the Ps formation probability. The positron results also reveal that epoxy cured with an appropriate amount of polyamide has a smaller dead layer suggesting that the amount of curing agent is a key factor affecting the photodegradation of epoxy resin.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 A. Rivaton, L. Moreau, and J.-L. Gardette, Polym. Degrad. Stabil. 58, 321 (1997).
  2. 2 A. Rivaton, L. Moreau, and J.-L. Gardette, Polym. Degrad. Stabil. 58, 333 (1997).
  3. 3 V. Ollier-Dureault and B. Gosse, J. Appl. Polym. Sci. 70, 1221 (1998).
  4. 4 L. Monney, R. Belali, J. Vebrel, C. Dubois, and A. Chambaudet, Polym. Degrad. Stabil. 62, 353 (1998).
  5. 5 L. Monney, N. Rouge, C. Dubois, and A. Chambaudet, Polym. Degrad. Stabil. 62, 367 (1998).
  6. 6 L. Monney, J. Bole, C. Dubois, and A. Chambaudet, Polym. Degrad. Stabil. 66, 17 (1999).
  7. 7 V. Bellenger and J. Verdu, J. Appl. Polym. Sci. 28, 2677 (1983).
  8. 8 H. Cao, R. Zhang, C. S. Sundar, J.-P. Yuan, Y. He, T. C. Sandreczki, Y. C. Jean, and B. Nielsen, Macromolecules 31, 6627 (1998).
  9. 9 H. Cao, J.-P. Yuan, R. Zhang, C.-M. Huang, Y. He, T. C. Sandreczki, Y. C. Jean, B. Nielsen, R. Suzuki, and T. Ohdaira, Macromolecules 32, 5925 (1999).
  10. 10 R. Zhang, X. Gu, H. Chen, J. Zhang, Y. Li, T. Nguyen, T. C. Sandreczki, and Y. C. Jean, J. Polym. Sci., Part B 42, 2441 (2004).
  11. 11 J. Yang, P. Zhang, G. D. Cheng, D. X. Li, H. B. Wu, Z. X. Li, X. Z. Cao, Q. J. Jia, R. S. Yu, and B. Y. Wang, Appl. Surf. Sci. 280, 109 (2013).
  12. 12 T. Suzuki, C. He, V. Shantarovich, K. Kondo, E. Hamada, M. Matso, L. Ma, and Y. Ito, Radiat. Phys. Chem. 66, 161 (2003).
  13. 13 T. Suzuki, C. He, K. Kondo, V. Shantarovich, and Y. Ito, Radiat. Phys. Chem. 68, 489 (2003).
  14. 14 C. He, V. P. Shantarovich, T. Suzuki, S. V. Stepanov, R. Suzuki, and M. Matsuo, J. Chem. Phys. 122, 214907 (2005).
  15. 15 B. Mailhot, S. Morlat-Thérias, M. Ouahioune, and J.-L. Gardette, Macromol. Chem. Phys. 206, 575 (2005).
  16. 16 G. G. A. Böhm, J. Polym. Sci., Part A 5, 639 (1967).