JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011209 (2014) doi:10.7567/JJAPCP.2.011209

Study of reversibility of self-assembly in saponite layered nanoparticles

Kazuomi Numata, Kiminori Sato

  1. Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
  • Received June 30, 2014
  • PDF (614 KB) |

Abstract

The reversible process of self-assembly involving the rheological motion of 2-dimensional nanosheets with the aid of water molecules was studied for saponite inorganic layered nanoparticles by dilatometry and positronium lifetime spectroscopy. The two nanosheet insertion type local molecular structure, dominant in the dehydrated state, was not fully reproducible upon dehydration for the self-assembled sample. The two nanosheet insertion type local structure could thus disappear when saponite goes through self-assembly several times. It was furthermore found that a local structure with a void size slightly larger than that in the two nanosheet insertion type structure exists before self-assembly. This structure, presumably due to curved nanosheets, is metastable and gradually disappears during self-assembly.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 K. Sato, K. Numata, W. Dai, and M. Hunger, Appl. Phys. Lett. 104, 131901 (2014).
  2. 2 K. Sato, K. Numata, W. Dai, and M. Hunger, Phys. Chem. Chem. Phys. 16, 10959 (2014).
  3. 3 K. Sato, K. Fujimoto, K. Kawamura, W. Dai, and M. Hunger, J. Phys. Chem. C 116, 22954 (2012).
  4. 4 K. Numata, K. Sato, and K. Fujimoto, Int. J. Nanosci. 11, 1240034 (2012).
  5. 5 K. Sato, K. Fujimoto, W. Dai, and M. Hunger, J. Phys. Chem. C 117, 14075 (2013).
  6. 6 K. Sato, K. Numata, and K. Fujimoto, Int. J. Nanosci. 11, 1240033 (2012).
  7. 7 K. Sato and W. Sprengel, J. Chem. Phys. 137, 104906 (2012).
  8. 8 S. J. Tao, J. Chem. Phys. 56, 5499 (1972).
  9. 9 M. Eldrup, D. Lightbody, and J. N. Sherwood, Chem. Phys. 63, 51 (1981).
  10. 10 K. Ito, T. Oka, Y. Kobayashi, Y. Shirai, K. Wada, M. Matsumoto, M. Fujinami, T. Hirade, Y. Honda, H. Hosomi, Y. Nagai, K. Inoue, H. Saito, K. Sakaki, K. Sato, A. Shimazu, and A. Uedono, Mater. Sci. Forum 607, 248 (2009).
  11. 11 K. Ito, T. Oka, Y. Kobayashi, Y. Shirai, K. Wada, M. Matsumoto, M. Fujinami, T. Hirade, Y. Honda, H. Hosomi, Y. Nagai, K. Inoue, H. Saito, K. Sakaki, K. Sato, A. Shimazu, and A. Uedono, J. Appl. Phys. 104, 026102 (2008).
  12. 12 P. Kirkegaard and M. Eldrup, Comput. Phys. Commun. 7, 401 (1974).
  13. 13 S. Morodome and K. Kawamura, Clays Clay Miner. 57, 150 (2009).
  14. 14 H. Sato, A. Yamagishi, and K. Kawamura, J. Phys. Chem. B 105, 7990 (2001).