JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011301 (2014) doi:10.7567/JJAPCP.2.011301

Production of positrons via pair creation from LCS gamma-rays and application to defect study in bulk materials

Fuminobu Hori1, Kouji Ishii1, Taishi Ishiyama1, Akihiro Iwase1, Shuji Miyamoto2, Mititaka Terasawa2

  1. 1Department of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan
  2. 2Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Kamigori, Hyogo 678-1205, Japan
  • Received March 26, 2014
  • PDF (865 KB) |


A new positron production and measurement apparatus has been developed at a synchrotron radiation facility. Highly energetic positrons were created via pair creation in a Pb target by implantation of 16.7 MeV photons generated via inverse Compton scattering of a Nd laser beam from a 1 GeV electron beam circulating in the storage ring at the New SUBARU synchrotron radiation facility. These positrons, with an energy of around 8 MeV, are separated using a magnetic field and directly implanted into a thick sample to detect defects. By using laser Compton scattered (LCS) photon generated positrons, we performed positron annihilation Doppler broadening measurement for fatigue stress applied iron with a thickness of 2 mm. Vacancy type defects in nondestructive fatigue stress applied iron specimens were successfully detected by this LCS-positron apparatus.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994).
  2. 2 A. Seeger, F. Banhart, and W. Bauer, in Positron Annihilation, ed. L. Dorikiens-Vanpraet, M. Dorikiens, and D. Segers (World Scientific, Singapore, 1989) p. 275.
  3. 3 D. O. Welch and K. G. Lynn, Phys. Status Solidi B 77, 277 (1976).
  4. 4 M. Maekawa, Y. Fukaya, A. Yabuuchi, I. Mochizuki, and A. Kawasuso, Nucl. Instrum. Methods Phys. Res., Sect. B 308, 9 (2013).
  5. 5 M. Straticiuc, I. Pana, I. Burducea, V. Braic, P. M. Racolta, and A. Jipa, Optoelectron. Adv. Mater., Rapid Commun. 6, 836 (2012).
  6. 6 K. Wada, T. Hyodo, A. Yagishita, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, Y. Nagashima, and Y. Fukaya, Eur. Phys. J. D 66, 37 (2012).
  7. 7 M. Maekawa and A. Kawasuso, Nucl. Instrum. Methods Phys. Res., Sect. B 270, 23 (2012).
  8. 8 M. Matsuya, S. Jinno, T. Ootsuka, M. Inoue, T. Kurihara, M. Doyama, M. Inoue, and M. Fujinami, Nucl. Instrum. Methods Phys. Res., Sect. A 645, 102 (2011).
  9. 9 J. P. Sullivan, J. Roberts, R. W. Weed, M. R. Went, D. S. Newman, and S. J. Buckman, Meas. Sci. Technol. 21, 085702 (2010).
  10. 10 F. A. Selim, D. P. Wells, J. F. Harmon, and J. Williams, J. Appl. Phys. 97, 113539 (2005).
  11. 11 K. Sakaue, T. Saito, I. Yamazaki, R. Kuroda, M. Washio, T. Hirose, T. Omori, T. Okugi, Y. Kurihara, J. Urakawa, M. Fukuda, M. Nomura, and A. Ohashi, Int. J. Mod. Phys. B 21, 519 (2007).
  12. 12 K. Dobashi, T. Hirose, T. Kumita, Y. Kurihara, T. Muto, T. Omori, T. Okugi, K. Sugiyama, and J. Urakawa, Nucl. Instrum. Methods Phys. Res., Sect. A 437, 169 (1999).
  13. 13 C. Hugenschmidt, K. Schreckenbach, D. Habs, and P. G. Thirolf, Appl. Phys. B 106, 241 (2012).
  14. 14 T. Hirade, H. Toyokawa, T. Ohdaira, R. Suzuki, and H. Ohgaki, Mater. Sci. Forum 445–446, 474 (2004).
  15. 15 D. Li, K. Imasaki, S. Miyamoto, K. Horikawa, S. Amano, and T. Mochizuki, Appl. Phys. Lett. 94, 091112 (2009).
  16. 16 K. Horikawa, S. Miyamoto, S. Amano, and T. Mochizuki, Nucl. Instrum. Methods Phys. Res., Sect. A 618, 209 (2010).
  17. 17 S. Amano, K. Horikawa, K. Ishihara, S. Miyamoto, T. Hayakawa, T. Shizuma, and T. Mochizuki, Nucl. Instrum. Methods Phys. Res., Sect. A 602, 337 (2009).
  18. 18 K. Horikawa, S. Miyamoto, S. Amano, D. Li, K. Imasaki, and T. Mochizuki, IEEJ Trans. EIS 130, 1784 (2010).
  19. 19 F. Hori, K. Koike, and R. Oshima, Appl. Surf. Sci. 242, 304 (2005).
  20. 20 P. J. Schultz and K. G. Lynn, Rev. Mod. Phys. 60, 701 (1988).
  21. 21 T. Aruga, S. Takamura, M. Hirose, and Y. Itoh, Phys. Rev. B 46, 14411 (1992).
  22. 22 A. Vehanen, K. Saarinen, P. Hautojärvi, and H. Huomo, Phys. Rev. B 35, 4606 (1987).
  23. 23 T. Iwai, K. Murakami, T. Iwata, and Y. Katano, Nucl. Instrum. Methods Phys. Res., Sect. B 315, 153 (2013).
  24. 24 P. J. Hautojärvi, Positrons in Solids (Springer, Berlin, 1979).
  25. 25 Y. Kawaguchi and N. Nakamura, J. Jpn. Inst. Met. 65, 835 (2001) [in Japanese].
  26. 26 F. Hori and R. Oshima, Phys. Status Solidi A 191, 409 (2002).
  27. 27 P. Asoka-Kumar, J. H. Hartley, R. H. Howell, P. A. Sterne, D. Akers, V. Shah, and A. Denison, Acta Mater. 50, 1761 (2002).
  28. 28 I. Müller, K. Bennewitz, M. Haaks, T. E. M. Staab, S. Eisenberg, T. Lampe, and K. Maier, Mater. Sci. Forum 445–446, 498 (2004).
  29. 29 Y. Kawaguchi, N. Nakamura, and S. Yusa, Mater. Trans. 43, 727 (2002).
  30. 30 N. Maeda, N. Nakamura, M. Uchida, Y. Ohta, and K. Yoshida, Nucl. Eng. Des. 167, 169 (1996).
  31. 31 U. Holzwarth and P. Schaaff, Phys. Rev. B 69, 094110 (2004).
  32. 32 U. Holzwarth and P. Schaaff, J. Mater. Sci. 42, 5620 (2007).