JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011302 (2014) doi:10.7567/JJAPCP.2.011302

Electron gun using coniferous carbon nano-structure

Hidetoshi Kato, Brian E. O’Rourke, Ryoichi Suzuki

  1. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
  • Received May 31, 2014
  • PDF (1.2 MB) |

Abstract

We have measured the emission stability of a coniferous carbon nano-structure (CCNS) field emission electron source. Stable emission over the 1274 h measurement was observed at an emission current density of 20 mA·cm−2. The CCNS emitter can generate an emission current of more than 10 mA making it a practical choice for many applications requiring high electron current. For example, we are currently developing a CCNS based electron gun for electron accelerators and a portable X-ray source. Recent progress on both these applications is presented.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 S. Iijima, Nature 354, 56 (1991).
  2. 2 A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269, 1550 (1995).
  3. 3 W. A. de Heer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995).
  4. 4 L. A. Chernozatonskii, Y. V. Gulyaev, Z. J. Kosakovskaja, N. I. Sinitsyn, G. V. Torgashov, Y. F. Zakharchenko, E. A. Fedorov, and V. P. Val’chuk, Chem. Phys. Lett. 233, 63 (1995).
  5. 5 H. Furuta, H. Koji, T. Komukai, and A. Hatta, Diamond Relat. Mater. 35, 29 (2013).
  6. 6 Y.-C. Choi and M.-S. Jeong, Carbon Lett. 10, 234 (2009).
  7. 7 Y.-C. Kim, J.-W. Nam, M.-I. Hwang, I.-H. Kim, C.-S. Lee, Y.-C. Choi, J.-H. Park, H.-S. Kim, and J.-M. Kim, Appl. Phys. Lett. 92, 263112 (2008).
  8. 8 H. Machida, S. Honda, S. Fujii, K. Himuro, H. Kawai, K. Ishida, K. Oura, and M. Katayama, Jpn. J. Appl. Phys. 46, 867 (2007).
  9. 9 J.-W. Nam, S.-H. Cho, Y.-C. Choi, J.-S. Ha, J.-H. Park, D.-H. Choe, and J.-B. Yoo, 2005 Int. Vac. Nanoelectronics Conf. (IEEE, 2005), p. 292.
  10. 10 Y. Saito and U. Sashiro, Carbon 38, 169 (2000).
  11. 11 J.-H. Deng, Z.-X. Ping, R.-T. Zheng, and G.-A. Cheng, J. Korean Phys. Soc. 58, 897 (2011).
  12. 12 S. Fujii, S. Honda, H. Machida, H. Kawai, K. Ishida, M. Katayama, H. Furuta, T. Hirao, and K. Oura, Appl. Phys. Lett. 90, 153108 (2007).
  13. 13 A. Hiraki, M. Haba, and H.-X. Wang, U.S. Patent 8518542 (2013).
  14. 14 A. Hiraki and H. Hiraki, Rev. Mex. Fis. S 54, 44 (2008).
  15. 15 B. E. O’Rourke, N. Oshima, A. Kinomura, T. Ohdaira, and R. Suzuki, Mater. Sci. Forum 733, 285 (2013).
  16. 16 B. E. O’Rourke, N. Oshima, R. Kuroda, R. Suzuki, T. Ohdaira, A. Kinomura, N. Hayashizaki, E. Minehara, H. Yamauchi, Y. Fukamizu, M. Shikibu, T. Kawamoto, and Y. Minehara, J. Phys.: Conf. Ser. 262, 012043 (2011).
  17. 17 R. Suzuki, Y. Kobayashi, and Y. Ishiguro, Adv. X-ray Chem. Anal. Jpn. 41, 201 (2010) [in Janpnese].
  18. 18 Y. Kobayashi, T. Takatsuka, R. Suzuki, and Y. Ishiguro, Radioisotopes 59, 581 (2010).
  19. 19 V. N. Volkov, S. G. Konstantinov, A. M. Kudryavtsev, O. K. Myskin, V. M. Petrov, and A. G. Tribendis, Proc. 2nd Asian Particle Accelerator Conf. (Beijing, China, 2001), p. 170.
  20. 20 R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
  21. 21 V. Guglielmotti, E. Tamburri, S. Orlanducci, M. L. Terranova, M. Rossi, M. Notarianni, S. B. Fairchild, B. Maruyama, N. Behabtu, C. C. Young, and M. Pasquali, Carbon 52, 356 (2013).
  22. 22 H. C. Chang, C. C. Li, S. F. Jen, C. C. Lu, I. Y. Y. Bu, P. W. Chiu, and K. Y. Lee, Diamond Relat. Mater. 31, 42 (2013).
  23. 23 J. H. Deng, R. T. Zheng, Y. M. Yang, Y. Zhao, and G. A. Cheng, Carbon 50, 4732 (2012).
  24. 24 J. Zhao, J. Zhang, Y. J. Su, Z. Yang, L. M. Wei, and Y. F. Zhang, J. Mater. Sci. 47, 6535 (2012).