JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011304 (2014) doi:10.7567/JJAPCP.2.011304

Development of a vertical slow positron beamline at AIST

Brian E. O’Rourke, Nagayasu Oshima, Atsushi Kinomura, Ryoichi Suzuki

  1. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
  • Received May 31, 2014
  • PDF (1.4 MB) |


A new slow positron beamline with two measurement ports has been installed at AIST. Positrons are generated using the 70 MeV AIST LINAC and are guided to the measurement ports using a solenoid magnetic field. Both beam ports are arranged vertically with the positron beam incident on the sample from above and samples loaded horizontally. Port No. 1 is designed for positron annihilation lifetime spectroscopy (PALS) and Doppler broadening of annihilation radiation (DBAR) measurements with a ∼10 mm diameter positron beam. The beamline on port No. 2 contains a transmission type remoderator for a brightness enhanced positron microbeam, similar to the existing positron probe microanalyzer (PPMA) at AIST.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semi-conductors (Springer, Berlin, 1999).
  2. 2 Positron Beams and Their Applications, ed. P. Coleman (World Scientific, Singapore, 2000).
  3. 3 P. J. Schultz and K. G. Lynn, Rev. Mod. Phys. 60, 701 (1988).
  4. 4 R. Krause-Rehberg, M. Jungmann, A. Krille, B. Werlich, A. Pohl, W. Anwand, G. Brauer, M. Butterling, H. Büttig, K. M. Kosev, J. Teichert, A. Wagner, and T. E. Cowan, J. Phys.: Conf. Ser. 262, 012003 (2011).
  5. 5 C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, B. Strasser, and W. Triftshäuser, Nucl. Instrum. Methods Phys. Res., Sect. B 221, 160 (2004).
  6. 6 H. Schut, A. van Veen, J. de Roode, and F. Labohm, Mater. Sci. Forum 445–446, 507 (2004).
  7. 7 B. E. O’Rourke, N. Hayashizaki, A. Kinomura, R. Kuroda, E. J. Minehara, T. Ohdaira, N. Oshima, and R. Suzuki, Rev. Sci. Instrum. 82, 063302 (2011).
  8. 8 T. Akahane, T. Chiba, N. Shiotani, S. Tanigawa, T. Mikado, R. Suzuki, M. Chiwaki, T. Yamazaki, and T. Tomimasu, Appl. Phys. 51, 146 (1990).
  9. 9 R. Suzuki, T. Mikado, M. Chiwaki, H. Ohgaki, and T. Yamazaki, Appl. Surf. Sci. 85, 87 (1995).
  10. 10 N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, J. Appl. Phys. 103, 094916 (2008).
  11. 11 N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, Appl. Phys. Lett. 94, 194104 (2009).
  12. 12 W. Zhou, Z. Chen, N. Oshima, K. Ito, B. E. O’Rourke, R. Kuroda, R. Suzuki, H. Yanagishita, T. Tsutsui, A. Uedono, and N. Hayashizaki, Appl. Phys. Lett. 101, 014102 (2012).
  13. 13 B. E. O’Rourke, N. Oshima, R. Kuroda, R. Suzuki, T. Ohdaira, A. Kinomura, N. Hayashizaki, E. Minehara, H. Yamauchi, Y. Fukamizu, M. Shikibu, T. Kawamoto, and Y. Minehara, J. Phys.: Conf. Ser. 262, 012043 (2011).
  14. 14 B. E. O’Rourke, N. Oshima, A. Kinomura, T. Ohdaira, and R. Suzuki, Mater. Sci. Forum 733, 285 (2013).
  15. 15 A. Yabuuchi, N. Oshima, H. Kato, B. E. O’Rourke, A. Kinomura, T. Ohdaira, Y. Kobayashi, and R. Suzuki, JJAP Conf. Proc. 2, 011102 (2014).
  16. 16 R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, and T. Tomimasu, Jpn. J. Appl. Phys. 30, L532 (1991).