JJAP Conference Proceedings

JJAP Conf. Proc. 2, 011306 (2014) doi:10.7567/JJAPCP.2.011306

Development of combinatorial defect analysis with an intense positron microprobe

Nagayasu Oshima1, Yasuhiro Kamada2, Hideo Watanabe3, Atsushi Kinomura1, Ryoichi Suzuki1

  1. 1Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
  2. 2NDE and Science Research Center, Faculty of Engineering, Iwate University, Morioka 020-8551, Japan
  3. 3Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  • Received December 19, 2014
  • PDF (1.1 MB) |

Abstract

The concept of combinatorial defect/pore analysis using an intense positron microprobe is proposed. This combinatorial method is suitable to analyze defects/pores for a large number of samples systematically. A test of this method was performed by applying it to the analysis of ion beam irradiated Fe film samples.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 Positron Beams and Their Applications, ed. P. Coleman (World Scientific, Singapore, 2000).
  2. 2 R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors (Springer Berlin, 1999).
  3. 3 N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, Appl. Phys. Lett. 94, 194104 (2009).
  4. 4 T. Akahane, T. Chiba, N. Shiotani, S. Tanigawa, T. Mikado, R. Suzuki, M. Chiwaki, T. Yamazaki, and T. Tomimasu, Appl. Phys. A 51, 146 (1990).
  5. 5 B. E. O’Rourke, N. Hayashizaki, A. Kinomura, R. Kuroda, E. Minehara, T. Ohdaira, N. Oshima, and R. Suzuki, Rev. Sci. Instrum. 82, 063302 (2011).
  6. 6 N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, J. Appl. Phys. 103, 094916 (2008).
  7. 7 N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, Mater. Sci. Forum 607, 238 (2009).
  8. 8 R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, and T. Tomimasu, Jpn. J. Appl. Phys. 30, L532 (1991).
  9. 9 N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, Radiat. Phys. Chem. 78, 1096 (2009).
  10. 10 A. Uedono, N. Inoue, Y. Hayashi, K. Eguchi, T. Nakamura, Y. Hirose, M. Yoshimaru, N. Oshima, T. Ohdaira, and R. Suzuki, Jpn. J. Appl. Phys. 48, 120222 (2009).
  11. 11 A. Uedono, N. Inoue, Y. Hayashi, K. Eguchi, T. Nakamura, Y. Hirose, M. Yoshimaru, N. Oshima, T. Ohdaira, and R. Suzuki, Proc. the 2009 IEEE International Interconnect Technology Conf., 2009, p. 75.
  12. 12 A. Uedono, T. Watanabe, S. Kimura, Y. Zhang, M. Lozac’h, L. W. Sang, S. Ishibashi, N. Oshima, R. Suzuki, and M. Sumiya, J. Appl. Phys. 114, 184504 (2013).
  13. 13 A. Uedono, I. Yonenaga, T. Watanabe, S. Kimura, N. Oshima, R. Suzuki, S. Ishibashi, and Y. Ohno, J. Appl. Phys. 114, 084506 (2013).
  14. 14 A. Uedono, Y. Mizushima, Y. Kim, T. Nakamura, T. Ohba, N. Yoshihara, N. Oshima, and R. Suzuki, J. Appl. Phys. 116, 134501 (2014).
  15. 15 H. Tsuchida, T. Iwai, S. Kasai, H. Tanaka, N. Oshima, R. Suzuki, T. Yoshiie, and A. Itoh, J. Phys.: Conf. Ser. 262, 012060 (2011).
  16. 16 A. Yabuuchi, N. Oshima, H. Kato, B. E. O’Rourke, A. Kinomura, T. Ohdaira, Y. Kobayashi, and R. Suzuki, JJAP Conf. Proc. 2, 011102 (2014).
  17. 17 N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, S. Kubota, H. Watanabe, K. Tenjinbayashi, A. Uedono, and M. Fujinami, J. Phys.: Conf. Ser. 262, 012044 (2011).
  18. 18 T. Doshida, H. Suzuki, K. Takai, N. Oshima, and T. Hirade, ISIJ Int. 52, 198 (2012).
  19. 19 T. Oka, N. Oshima, R. Suzuki, A. Uedono, M. Fujinami, and Y. Kobayashi, Appl. Phys. Lett. 101, 203108 (2012).
  20. 20 N. Oshima, B. E. O’Rourke, R. Kuroda, R. Suzuki, H. Watanabe, S. Kubota, K. Tenjinbayashi, A. Uedono, and N. Hayashizaki, Appl. Phys. Express 4, 066701 (2011).
  21. 21 W. Zhou, Z. Chen, N. Oshima, K. Ito, B. E. O’Rourke, R. Kuroda, R. Suzuki, H. Yanagishita, T. Tsutsui, A. Uedono, and N. Hayashizaki, Appl. Phys. Lett. 101, 014102 (2012).
  22. 22 M. Eldrup and B. N. Singh, J. Nucl. Mater. 323, 346 (2003).
  23. 23 T. Iwai and H. Tsuchida, Nucl. Instrum. Methods Phys. Res., Sect. B 285, 18 (2012).
  24. 24 M. A. Okuniewski, D. P. Wells, F. A. Selim, S. A. Maloy, M. R. James, J. F. Stubbins, C. S. Deo, S. G. Srivilliputhur, and M. I. Baskes, J. Nucl. Mater. 351, 149 (2006).
  25. 25 V. Kršjak, V. Slugeň, M. Mikloš, M. Petriska, and P. Ballo, Appl. Surf. Sci. 255, 153 (2008).
  26. 26 J. F. Ziegler, Nucl. Instrum. Methods Phys. Res., Sect. B 219–220, 1027 (2004).
  27. 27 A. Subagyo, K. Sueoka, K. Mukasa, and K. Hayakawa, Jpn. J. Appl. Phys. 38, 3820 (1999).