JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011101 (2015) doi:10.7567/JJAPCP.3.011101

Electric properties of carbon-doped n-type β-FeSi/p-type Si heterojunction diodes

Motoki Takahara1, Tarek M. Mostafa1, Ryuji Baba1, Suguru Funasaki1, Mahmoud Shaban2, Nathaporn Promros3, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Electrical Engineering, Aswan Faculty of Engineering, Aswan University, Aswan 81542, Egypt
  3. 3Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520, Thailand
  • Received July 18, 2014
  • PDF (1.1 MB) |

Abstract

Undoped and C-doped n-type β-FeSi2 thin films were epitaxially grown on p-type Si substrates by sputtering and their heterojunction diode performances were experimentally studied. The near-infrared photodetection, at a wavelength of 1.3 µm, in these heterojunction diodes was clearly improved as compared to the heterojunctions comprising undoped-β-FeSi2. From X-ray diffraction and Raman spectroscopic measurements, there were no evident structural differences between the undoped and C-doped films. C-doping hardly affects the crystallization and epitaxial growth of β-FeSi2. The enhancement in the diode performance by C-doping might be owing to C atoms terminating dangling bonds and compensating defects in β-FeSi2 crystals.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 M. Suzuno, T. Koizumi, and T. Suemasu, Appl. Phys. Lett. 94, 213509 (2009).
  2. 2 M. Shaban, K. Nomoto, S. Izumi, and T. Yoshitake, Appl. Phys. Lett. 94, 222113 (2009).
  3. 3 B. Jalali and S. Fathpour, J. Lightwave Technol. 24, 4600 (2006).
  4. 4 M. C. Bost and J. E. Mahan, J. Appl. Phys. 58, 2696 (1985).
  5. 5 J. M. Gay, P. Stocker, and F. Rethore, J. Appl. Phys. 73, 8169 (1993).
  6. 6 M. Gemelli and L. Miglio, Thin Solid Films 380, 282 (2000).
  7. 7 B. Tatar, K. Kutlu, and M. Urgen, Thin Solid Films 516, 13 (2007).
  8. 8 T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, Jpn. J. Appl. Phys. 39, L1013 (2000).
  9. 9 M. Suzuno, S. Murase, T. Koizumi, and T. Suemasu, Appl. Phys. Express 1, 021403 (2008).
  10. 10 M. Shaban, S. Izumi, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 95, 162102 (2009).
  11. 11 S. Izumi, M. Shaban, N. Promros, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 102, 032107 (2013).
  12. 12 K. Akiyama, S. Ohya, H. Takeno, N. Kieda, and H. Funakubo, Jpn. J. Appl. Phys. 40, L460 (2001).
  13. 13 K. Lefki, P. Muret, E. Bustarrent, N. Boutarek, R. Madar, J. Chevrier, J. Derrien, and M. Brunel, Solid State Commun. 80, 791 (1991).
  14. 14 Y. Maeda, K. Umezawa, Y. Hayashi, and K. Miyake, Thin Solid Films 381, 219 (2001).
  15. 15 Y. Maeda, Y. Terai, and M. Itakura, Opt. Mater. 27, 920 (2005).