JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011102 (2015) doi:10.7567/JJAPCP.3.011102

Epitaxial growth of n-type β-FeSi2 thin films on p-type Si(111) substrates by radio-frequency magnetron sputtering and rectifying action of heterojunctions

Tarek M. Mostafa1, Motoki Takahara1, Ryuji Baba1, Suguru Funasaki1, Mahmoud Shaban2, Nathaporn Promros3, Aki Tominaga1,4, Maiko Nishibori4, Tsuyoshi Yoshitake1,4

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Electrical Engineering, Aswan Faculty of Engineering, Aswan University, Aswan 81542, Egypt
  3. 3Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
  4. 4Research Center for Synchrotron Light Applications, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  • Received July 31, 2014
  • PDF (1.2 MB) |


n-Type β-FeSi2 thin films were deposited on p-type Si(111) substrates by conventional radio frequency magnetron sputtering at substrate temperatures of 500–600 °C without post-annealing. The epitaxial growth of β-FeSi2 on Si(111) initiates at substrate temperatures of higher than 560 °C, and it was found that the epitaxial growth is indispensable for the n-type β-FeSi2/p-type Si heterojunctions having rectifying action.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 M. Tanaka, Y. Kumagai, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 39, L1013 (2000).
  2. 2 T. Ootsuka, Y. Fudamoto, M. Osamura, T. Suemasu, Y. Makita, Y. Fukuzawa, and Y. Nakayama, Appl. Phys. Lett. 91, 142114 (2007).
  3. 3 M. Shaban, S. Izumi, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 95, 162102 (2009).
  4. 4 N. E. Christensen, Phys. Rev. B 42, 7148 (1990).
  5. 5 M. C. Bost and J. Mahan, J. Appl. Phys. 64, 2034 (1988).
  6. 6 M. Powalla and K. Herz, Appl. Surf. Sci. 65-66, 482 (1993).
  7. 7 C. H. Olk, S. M. Yalisove, and G. L. Doll, Phys. Rev. B 52, 1692 (1995).
  8. 8 M. Shaban, K. Nomoto, S. Izumi, and T. Yoshitake, Appl. Phys. Lett. 94, 222113 (2009).
  9. 9 Z. Yang and K. P. Homewood, J. Appl. Phys. 79, 4312 (1996).
  10. 10 K. Shimura, K. Yamaguchi, M. Sasase, H. Yamamoto, S. Shamoto, and K. Hojou, Vacuum 80, 719 (2006).
  11. 11 J. E. Mahan, K. M. Geib, G. Y. Robinson, R. G. Long, Y. Xinghua, G. Bai, M. A. Nicolet, and M. Nathan, Appl. Phys. Lett. 56, 2126 (1990).
  12. 12 J. L. Regolini, F. Trincat, I. Berhezier, and Y. Shapira, Appl. Phys. Lett. 60, 956 (1992) YSh.
  13. 13 M. Tanaka, Y. Kumagai, T. Suemasu, and F. Hasegawa, Appl. Surf. Sci. 117–118, 303 (1997).
  14. 14 K. Wünstel and P. Wagner, Appl. Phys. A 27, 207 (1982).
  15. 15 M. Shaban, K. Nakashima, and T. Yoshitake, Jpn. J. Appl. Phys. 46, L667 (2007).
  16. 16 S. Izumi, M. Shaban, N. Promros, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 102, 032107 (2013).
  17. 17 T. Yoshitake, Y. Inokuchi, A. Yuri, and K. Nagayama, Appl. Phys. Lett. 88, 182104 (2006).