JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011104 (2015) doi:10.7567/JJAPCP.3.011104

Formation and properties of p–i–n diodes based on hydrogenated amorphous silicon with embedded CrSi, MgSi and CaSi nanocrystallites for energy conversion applications

Nikolay G. Galkin1, Konstantin N. Galkin1, Igor M. Chernev1, Radek Fajgar2, The Ha Stuchlikova3, Jiri Stuchlik3, Zdenek Remes3,4

  1. 1Institute of Automation and Control Processes of Far Eastern Branch of RAS, Vladivostok, 690041, Radio, 5, Russia
  2. 2Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojová 135, 165 02 Praha 6, Czech Republic
  3. 3Institute of Physics of the ASCR, v. v. i., Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic
  4. 4Czech Technical University in Prague, Faculty of Biomedical Engineering, Sitna 3105, 27201 Kladno, Czech Republic
  • Received July 31, 2014
  • PDF (1.6 MB) |


The hydrogenated amorphous silicon (a-Si:H) based p–i–n diode structures Al/a-Si:H(p+)/a-Si:H(i)/(silicides NPs/a-Si)x/a-Si:H(i)/a-Si:H(n+)/ITO/glass with multiple layers (x = 8,…,15) of the embedded narrow band semiconducting nanoparticle silicide (CrSi2, Mg2Si, and Ca2Si) multistructures have been grown by combining the plasma enhanced chemical vapour deposition (PECVD) and the UHV reactive deposition epitaxy (RDE). Formation of silicide nanoparticles and multistructures has been confirmed in-situ by the Auger electron spectroscopy (AES) and electron energy loss spectroscopies (EELS) and ex-situ by optical absorbance and Raman spectroscopies. The IV curves of the a-Si:H p–i–n diodes with embedded silicide NP multistructures have shown the maximal forward current for Ca2Si nanoparticles. The room temperature electroluminescence has been observed in the near infrared region for diodes with embedded Ca2Si and Mg2Si NPs multistructures.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 N. G. Galkin, T. V. Velitchko, S. V. Skripka, and A. V. Khrustalev, Thin Solid Films 280, 211 (1996).
  2. 2 R. G. Morris, R. D. Redin, and G. C. Dalielson, Phys. Rev. 109, 1909 (1958).
  3. 3 L. Dózsa, G. Molnár, Z. Zolnai, L. Dobos, B. Pécz, S. A. Dotsenko, N. G. Galkin, D. A. Bezbabny, and D. V. Fomin, J. Mater. Sci. 48, 2872 (2013).
  4. 4 N. G. Galkin, K. N. Galkin, I. M. Chernev, R. Fajgar, T. H. Stuchlikova, Z. Remes, and J. Stuchlik, Phys. Status Solidi C 10, 1712 (2013).
  5. 5 T. H. Stuchlikova, J. Stuchlik, Z. Remes, R. Fajgar, N. G. Galkin, K. N. Galkin, and I. M. Chernev, Conf. Proc. of Nanocon-2013, 2013, PA35.
  6. 6 N. I. Plusnin, N. G. Galkin, V. G. Lifshits, and S. A. Lobachev, Surf. Rev. Lett. 02, 439 (1995).
  7. 7 K. N. Galkin, M. Kumar, Govind, S. M. Shivaprasad, V. V. Korobtsov, and N. G. Galkin, Thin Solid Films 515, 8192 (2007).
  8. 8 S. A. Dotsenko, D. V. Fomin, K. N. Galkin, D. L. Goroshko, and N. G. Galkin, Phys. Procedia 11, 95 (2011).
  9. 9 N. G. Galkin, A. M. Maslov, and A. V. Konchenko, Thin Solid Films 311, 230 (1997).
  10. 10 J. Holovský, M. Bonnet-Eymard, M. Boccard, M. Despeisse, and C. Ballif, Sol. Energy Mater. Sol. Cells 103, 128 (2012).
  11. 11 R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991) ISBN 0 521 37156.
  12. 12 N. G. Galkin, D. A. Bezbabnyi, S. A. Dotsenko, K. N. Galkin, I. M. Chernev, E. A. Chusovitin, P. Nemes-Incze, L. Dosza, B. Pecz, T. S. Shamirzaev, and A. K. Gutakovski, Solid State Phenom. 23, 91 (2013).