JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011109 (2015) doi:10.7567/JJAPCP.3.011109

Effects of lattice deformations on Raman spectra in β-FeSi epitaxial films

Yoshikazu Terai1,2, Haruki Yamaguchi1, Hiroaki Tsukamoto1, Tetsu Hattori1, Takahiko Higashi1

  1. 1Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
  2. 2Department of Computer Science and Electronics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
  • Received July 15, 2014
  • PDF (1.2 MB) |

Abstract

Effects of lattice deformations on Raman spectra were investigated in β-FeSi2 epitaxial films grown on Si substrates. The lattice of the epitaxial film was deformed depending on thermal-annealing temperature (Ta). In Raman spectra, Raman lines of Ag-mode (iron displacements) showed a frequency shift with increasing Ta. The shift of Raman lines showed that the residual strain in the epitaxial films was changed by the lattice deformation. In the temperature dependence of Raman spectra, the temperature shifts of the Raman lines were found to be different between β-FeSi2(100) || Si(001) and β-FeSi2(110)(101) || Si(111) epitaxial films.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 H. Lange, Phys. Status Solidi B 201, 3 (1997); Semiconducting Silicides, ed. V. Borisenko (Springer, New York, 2000).
  2. 2 H. Udono, I. Kikuma, T. Okuno, Y. Masumoto, H. Tajima, and S. Komuro, Thin Solid Films 461, 182 (2004).
  3. 3 N. E. Christensen, Phys. Rev. B 42, 7148 (1990).
  4. 4 L. Miglio and V. Meregalli, J. Vac. Sci. Technol. B 16, 1604 (1998).
  5. 5 D. B. Migas and L. Miglio, Phys. Rev. B 62, 11063 (2000).
  6. 6 K. Yamaguchi and K. Mizushima, Phys. Rev. Lett. 86, 6006 (2001).
  7. 7 K. Noda, Y. Terai, S. Hashimoto, K. Yoneda, and Y. Fujiwara, Appl. Phys. Lett. 94, 241907 (2009).
  8. 8 Y. Terai, K. Noda, K. Yoneda, H. Udono, Y. Maeda, and Y. Fujiwara, Thin Solid Films 519, 8468 (2011).
  9. 9 K. Noda, Y. Terai, K. Yoneda, and Y. Fujiwara, Phys. Procedia 11, 181 (2011).
  10. 10 D. L. Rousseau, R. P. Bauman, and S. P. S. Porto, J. Raman Spectrosc. 10, 253 (1981).
  11. 11 Y. Maeda, H. Udono, and Y. Terai, Thin Solid Films 461, 165 (2004).
  12. 12 G. Guizzetti, F. Marabelli, M. Patrini, P. Pellegrio, B. Pivac, V. Meregalli, H. Lange, W. Herion, and V. Tomm, Phys. Rev. B 55, 14290 (1997).
  13. 13 K. Lefki, P. Muret, E. Bustarret, N. Boutarek, R. Madar, J. Chevrier, J. Derrien, and M. Brunel, Solid State Commun. 80, 791 (1991).
  14. 14 H. F. Liu, N. Xiang, S. Tripathy, and S. J. Chua, J. Appl. Phys. 99, 103503 (2006).
  15. 15 H. F. Liu, A. Huang, and D. Z. Chi, J. Appl. Phys. 109, 083538 (2011).