JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011402 (2015) doi:10.7567/JJAPCP.3.011402

Removal of Ge Islands in al-induced layer-exchanged Ge thin films on glass substrates by selective etching technique

Koki Nakazawa, Kaoru Toko, Takashi Suemasu

  1. Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
  • Received July 17, 2014
  • PDF (1.2 MB) |

Abstract

Al-induced layer-exchanged Ge (ALILE-Ge) combined with epitaxy is a promising way to fabricate advanced electronic optical devices on foreign substrates as well as Si large-scale integrated circuits. The presence of Ge islands on the surface of the ALILE-Ge seed layer was a problem because the islands deteriorated the crystal quality of the epitaxial layer. This paper gives a solution to this problem: the Ge islands were selectively etched by H2O2 treatment. The ALILE-Ge seed layer was protected by using the oxidized Al membrane, prepared between Ge and Al, as an etching mask. By initially preparing the thick Ge layer and then removing the excess Ge islands, we improved the coverage of the ALILE-Ge seed layer on the substrate. The resulting ALILE-Ge provided a high (111) orientation fraction (96%) and large grains (>100 µm). This Ge layer appears promising for use in seed layers for epitaxial Ge, group III–V compound semiconductors, and other advanced materials.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 T. Sasada, Y. Nakakita, M. Takenaka, and S. Takagi, J. Appl. Phys. 106, 073716 (2009).
  2. 2 T. Nishimura, L. H. Lee, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, Appl. Phys. Express 4, 064201 (2011).
  3. 3 R. R. King, D. C. Low, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).
  4. 4 N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, ACS Nano 4, 3807 (2010).
  5. 5 K. Hamaya, H. Itoh, O. Nakatsuka, K. Ueda, K. Yamamoto, M. Itakura, T. Taniyama, T. Ono, and M. Miyao, Phys. Rev. Lett. 102, 137204 (2009).
  6. 6 K. Toko, Y. Ohta, T. Tanaka, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 99, 032103 (2011).
  7. 7 M. Matsue, Y. Yasutake, S. Fukatsu, T. Hosoi, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 104, 031106 (2014).
  8. 8 T. Sadoh, H. Kamizuru, A. Kenjo, and M. Miyao, Appl. Phys. Lett. 89, 192114 (2006).
  9. 9 K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, Solid-State Electron. 53, 1159 (2009).
  10. 10 J. H. Park, P. Kapur, K. C. Saraswat, and H. Peng, Appl. Phys. Lett. 91, 143107 (2007).
  11. 11 K. Toko, H. Kanno, A. Kenjo, T. Sadoh, T. Asano, and M. Miyao, Appl. Phys. Lett. 91, 042111 (2007).
  12. 12 H. Watakabe, T. Sameshima, H. Kanno, and M. Miyao, Thin Solid Films 508, 315 (2006).
  13. 13 W. Yeh, H. Chen, H. Huang, C. Hsiao, and J. Jeng, Appl. Phys. Lett. 93, 094103 (2008).
  14. 14 K. Sakaike, S. Higashi, H. Murakami, and S. Miyazaki, Thin Solid Films 516, 3595 (2008).
  15. 15 M. Tada, J. H. Park, J. R. Jain, and K. C. Saraswat, J. Electrochem. Soc. 156, D23 (2009).
  16. 16 O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, Appl. Phys. Lett. 73, 3214 (1998).
  17. 17 Y. Sugimoto, N. Takata, T. Hirota, K. Ikeda, F. Yoshida, H. Nakashima, and H. Nakashima, Jpn. J. Appl. Phys. 44, 4770 (2005).
  18. 18 M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 95, 132103 (2009).
  19. 19 C. Jaeger, T. Matsui, M. Takeuchi, M. Karasawa, M. Kondo, and M. Stutzmann, Jpn. J. Appl. Phys. 49, 112301 (2010).
  20. 20 A. Sarikov, J. Schneider, J. Berghold, M. Muske, I. Sieber, S. Gall, and W. Fuhs, J. Appl. Phys. 107, 114318 (2010).
  21. 21 B. I. Birajdar, T. Antesberger, B. Butz, M. Stutzmann, and E. Spiecker, Scr. Mater. 66, 550 (2012).
  22. 22 K. Toko, R. Numata, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, J. Appl. Phys. 115, 094301 (2014).
  23. 23 F. Katsuki, K. Hanafusa, M. Yonemura, T. Koyama, and M. Doi, J. Appl. Phys. 89, 4643 (2001).
  24. 24 R. Zanatta and I. Chambouleyron, J. Appl. Phys. 97, 094914 (2005).
  25. 25 Z. M. Wang, J. Y. Wang, L. P. H. Jeurgens, F. Phillipp, and E. Mittemeijer, Acta. Mater. 56, 5047 (2008).
  26. 26 W. Zhang, F. Ma, T. Zhang, and K. Xu, Thin Solid Films 520, 708 (2011).
  27. 27 S. Peng, D. Hu, and D. He, Appl. Surf. Sci. 258, 6003 (2012).
  28. 28 Q. Li, C. Chen, Z. Chen, Z. Jiao, M. Wu, C.-H. Shek, C. M. L. Wu, and J. K. L. Lai, Inorg. Chem. 51, 8473 (2012).
  29. 29 S. Hu, A. F. Marshall, and P. C. McIntyre, Appl. Phys. Lett. 97, 082104 (2010).
  30. 30 M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, ECS J. Solid State Sci. Technol. 1, P144 (2012).
  31. 31 K. Toko, M. Kurosawa, N. Saitoh, N. Yoshizawa, N. Usami, M. Miyao, and T. Suemasu, Appl. Phys. Lett. 101, 072106 (2012).
  32. 32 J.-H. Park, T. Suzuki, M. Kurosawa, M. Miyao, and T. Sadoh, Appl. Phys. Lett. 103, 082102 (2013).
  33. 33 K. Toko, K. Nakazawa, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, Cryst. Growth Des. 13, 3908 (2013).
  34. 34 K. Nakazawa, K. Toko, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, ECS J. Solid State Sci. Technol. 2, Q195 (2013).
  35. 35 K. Toko, K. Nakazawa, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, CrystEngComm 16, 2578 (2014).
  36. 36 N. Oya, K. Toko, N. Saitoh, N. Yoshizawa, and T. Suemasu, Appl. Phys. Lett. 104, 262107 (2014).
  37. 37 J.-H. Park, K. Kasahara, K. Hamaya, M. Miyao, and T. Sadoh, Appl. Phys. Lett. 104, 252110 (2014).
  38. 38 J. Räisänen, Solid-State Electron. 25, 49 (1982).