JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011404 (2015) doi:10.7567/JJAPCP.3.011404

Effects of triphenylborane addition to decaphenylcyclopentasilane thin films

Takeo Oku1, Naoki Hibi1, Atsushi Suzuki1, Tsuyoshi Akiyama1, Masahiro Yamada2, Sakiko Fukunishi3, Kazufumi Kohno3

  1. 1Department of Materials Science, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
  2. 2Osaka Gas Co., Ltd., Osaka 554-0051, Japan
  3. 3Osaka Gas Chemicals Co., Ltd., Osaka 554-0051, Japan
  • Received July 18, 2014
  • PDF (1.1 MB) |

Abstract

Organic thin film solar cells are potential “next generation” solar cells. Many p-type semiconductors have been used in organic solar cells, but there have been far fewer reports involving n-type organic semiconductors. Developing new n-type organic semiconductors is therefore desirable. Decaphenylpentasilane (DPPS) thin films were spin-coated from solutions containing boron (B), and the effects of B addition on film microstructures and electronic properties were investigated. Microstructures of DPPS thin films were investigated by X-ray diffraction, and DPPS thin films doped with B [DPPS(B)] showed the reduction of crystallinity upon annealing at 300 °C, while DPPS thin films exhibited crystalline structures. DPPS(B) thin films exhibited decreased electrical resistances upon the B doping and annealing. The desorption of phenyl and methyl groups from the DPPS(B) thin films was observed by Raman scattering measurements.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 S. Silence, J. Scott, F. Hache, E. Ginsbrug, P. Jenkner, P. Miller, R. Twieg, and W. Moermer, J. Opt. Soc. Am. B 10, 2306 (1993).
  2. 2 J. Lee, C. Seoul, J. Park, and J. H. Youk, Synth. Met. 145, 11 (2004).
  3. 3 T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasaki, D. Wang, M. Miyasaka, and Y. Takeuchi, Nature 440, 783 (2006).
  4. 4 H. Tanaka, H. Iwasawa, D. Wang, N. Toyoda, T. Aoki, I. Yudasaka, Y. Matsuki, T. Shimoda, and M. Furusawa, Jpn. J. Appl. Phys. 46, L886 (2007).
  5. 5 T. Masuda, Y. Matsuki, and T. Simoda, J. Colloid Interface Sci. 340, 298 (2009).
  6. 6 G. R. S. Iyer, E. K. Hobbie, S. Guruvenket, J. M. Hoey, K. J. Anderson, J. Lovaasen, C. Gette, D. L. Schulz, O. F. Swenson, A. Elangovan, and P. Boudjouk, ACS Appl. Mater. Interfaces 4, 2680 (2012).
  7. 7 T. Masuda, N. Sotani, H. Hamada, Y. Matsuki, and T. Shimoda, Appl. Phys. Lett. 100, 253908 (2012).
  8. 8 T. Masuda, Y. Matsuki, and T. Simoda, Thin Solid Films 520, 5091 (2012).
  9. 9 T. Masuda, Y. Matsuki, and T. Simoda, Thin Solid Films 520, 6603 (2012).
  10. 10 K. Yoshida, T. Oku, A. Suzuki, T. Akiyama, K. Tokumitsu, M. Nakamura, and M. Yamada, Cent. Eur. J. Eng. 3, 165 (2013).
  11. 11 T. Oku, J. Nakagawa, M. Iwase, A. Kawashima, K. Yoshida, A. Suzuki, T. Akiyama, K. Tokumitsu, M. Yamada, and M. Nakamura, Jpn. J. Appl. Phys. 52, 04CR07 (2013).
  12. 12 T. Oku, J. Nakagawa, A. Suzuki, T. Akiyama, M. Yamada, S. Fukunishi, K. Kohno, and M. Sasaki, Phys. Status Solidi C 10, 1832 (2013).
  13. 13 T. Oku, A. Takeda, A. Nagata, H. Kidowaki, K. Kumada, K. Fujimoto, A. Suzuki, T. Akiyama, Y. Yamasaki, and E. Ōsawa, Mater. Technol. 28, 21 (2013).
  14. 14 I. De Wolf, Spectrosc. Eur. 15, 6 (2003).
  15. 15 Y. K. Jin, H. K. Sun, H. L. Hyun, L. Kwanghee, M. Wanli, G. Xiong, and J. H. Alan, Adv. Mater. 18, 572 (2006).
  16. 16 K. Yoshino, K. Hosoda, A. Fujii, and M. Ishikawa, Jpn. J. Appl. Phys. 36, L368 (1997).