JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011405 (2015) doi:10.7567/JJAPCP.3.011405

Fabrication and characterization of silicon naphthalocyanine/fullerene-based photovoltaic devices with inverted structures

Haruto Maruhashi, Takeo Oku, Atsushi Suzuki, Tsuyoshi Akiyama

  1. Department of Materials Science, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
  • Received July 10, 2014
  • PDF (1.1 MB) |

Abstract

Fullerene-based photovoltaic devices with an inverted structure containing silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (SiNc) were fabricated and characterized. SiNc worked as a donor material, and showed optical absorption at ~800 nm. C60 and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were used as acceptor materials, and C60 or PCBM/SiNc system solar cells showed incident photon to current conversion efficiency in the range of 700–800 nm. The PCBM/SiNc solar cell provided high open circuit voltage of 0.74 V. From the energy level diagram, the higher lowest unoccupied molecular orbital level of PCBM contributed to the high open circuit voltage. The surface roughness at the C60/SiNc interface is larger compared to that at the PCBM/SiNc interface, which resulted in the high short circuit current density of the C60/SiNc solar cell.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 H. Y. Chen, J. Hou, A. E. Hayden, H. Yang, K. N. Houk, and Y. Yang, Adv. Mater. 22, 371 (2010).
  2. 2 M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
  3. 3 J. Kalowekamo and E. Baker, Sol. Energy 83, 1224 (2009).
  4. 4 T. Oku, A. Takeda, A. Nagata, H. Kidowaki, K. Kumada, K. Fujimoto, A. Suzuki, T. Akiyama, Y. Yamasaki, and E. Ōsawa, Mater. Technol. 28, 21 (2013).
  5. 5 F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 715 (2008).
  6. 6 J. A. Hauch, P. Schilinsky, S. A. Choulis, R. Childers, M. Biele, and C. J. Brabec, Sol. Energy Mater. Sol. Cells 92, 727 (2008).
  7. 7 T. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, and K. Takahashi, Sol. Energy Mater. Sol. Cells 92, 1476 (2008).
  8. 8 T. Oku, S. Hori, A. Suzuki, T. Akiyama, and Y. Yamasaki, Jpn. J. Appl. Phys. 53, 05FJ08 (2014).
  9. 9 M. G. Walter, A. B. Rudine, and C. C. Wamser, J. Porphyrins Phthalocyanines 14, 759 (2010).
  10. 10 F. Gang, K. Kasatani, H. Okamoto, and S. Takenaka, Chin. Phys. Lett. 22, 1687 (2005).
  11. 11 B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, and M. E. Kenney, J. Am. Chem. Soc. 106, 7404 (1984).
  12. 12 P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
  13. 13 S. Honda, H. Ohkita, H. Benten, and S. Ito, Chem. Commun. 46, 6596 (2010).
  14. 14 S. Honda, T. Nogami, H. Ohkita, H. Benten, and S. Ito, Appl. Mater. Interfaces 1, 804 (2009).
  15. 15 T. Hori, N. Fukuoka, T. Masuda, Y. Miyake, H. Yoshida, A. Fujii, Y. Shimizu, and M. Ozaki, Sol. Energy Mater. Sol. Cells 95, 3087 (2011).
  16. 16 Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka, and E. Nakamura, J. Am. Chem. Soc. 131, 16048 (2009).
  17. 17 T. Oku, K. Kumada, A. Suzuki, and K. Kikuchi, Cent. Eur. J. Eng. 2, 248 (2012).
  18. 18 T. Oku, S. Nose, K. Yoshida, A. Suzuki, T. Akiyama, and Y. Yamasaki, J. Phys.: Conf. Ser. 433, 012025 (2013).
  19. 19 T. Oku, K. Yoshida, A. Suzuki, T. Akiyama, and Y. Yamasaki, Phys. Status Solidi C 10, 1836 (2013).