JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011501 (2015) doi:10.7567/JJAPCP.3.011501

Fabrication of spin valve junctions based on Fe3Si/FeSi2/Fe3Si trilayered films

Yuki Asai1, Ken-ichiro Sakai1,2, Kazuya Ishibashi1, Kaoru Takeda3, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Control and Information Systems Engineering, Kurume National College of Technology, Kurume, Fukuoka 830-8555, Japan
  3. 3Department of Electrical Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan
  • Received July 28, 2014
  • PDF (1.1 MB) |


Fe3Si/FeSi2/Fe3Si trilayered junctions were prepared on Si(111) by facing targets direct-current sputtering combined with a mask method, and spin valve signals in current-perpendicular-to-plane (CPP) geometry was investigated for the change of the magnetization alignment. The shape of magnetization curves evidently exhibited that an antiparallel alignment is realized owing to a difference in the coercive force between the top and bottom Fe3Si layers. The electrical resistance was alternately changed for the formation of parallel and antiparallel alignments with the magnetic field. The spin valve signals in the Fe3Si/FeSi2/Fe3Si trilayered junctions were experimentally demonstrated.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
  2. 2 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988).
  3. 3 M. Julliere, Phys. Lett. A 54, 225 (1975).
  4. 4 K. Takarabe, T. Nishino, and Y. Hamakawa, Jpn. J. Appl. Phys. 18, 107 (1979).
  5. 5 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
  6. 6 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 151, 403 (1995).
  7. 7 K. Inomata, S. Okamura, R. Goto, and N. Tezuka, Jpn. J. Appl. Phys. 42, L419 (2003).
  8. 8 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
  9. 9 R. Moriya, K. Hamaya, A. Oiwa, and H. Munekata, Jpn. J. Appl. Phys. 43, L825 (2004).
  10. 10 T. Sadoh, T. Takeuchi, K. Ueda, A. Kenjo, and M. Miyao, Jpn. J. Appl. Phys. 45, 3598 (2006).
  11. 11 Y. Jing, Y. Xu, and J.-P. Wang, J. Appl. Phys. 105, 07B520 (2009).
  12. 12 M. Shaban, H. Kondo, K. Nakashima, and T. Yoshitake, Jpn. J. Appl. Phys. 47, 5420 (2008).
  13. 13 E. E. Fullerton, J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher, S. D. Bader, and F. T. Parker, J. Appl. Phys. 73, 6335 (1993).
  14. 14 K. Inomata, K. Yusu, and Y. Saito, Phys. Rev. Lett. 74, 1863 (1995).
  15. 15 A. Chaiken, R. P. Michel, and M. A. Wall, Phys. Rev. B 53, 5518 (1996).
  16. 16 Y. Endo, O. Kitakami, and Y. Shimada, Phys. Rev. B 59, 4279 (1999).
  17. 17 S. Gardelis, C. G. Smith, C. H. W. Barnes, E. H. Linfield, and D. A. Ritchie, Phys. Rev. B 60, 7764 (1999).
  18. 18 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
  19. 19 T. Matsuyama, C.-M. Hu, G. Meier, and U. Merkt, Phys. Rev. B 65, 155322 (2002).
  20. 20 P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999).
  21. 21 F. G. Monzon and M. L. Roukes, J. Magn. Magn. Mater. 198–199, 632 (1999).
  22. 22 T. H. Lee, H. C. Koo, K. H. Kim, H.-J. Kim, J. Chang, S.-H. Han, J. Hong, and S. H. Lim, J. Magn. Magn. Mater. 321, 3795 (2009).
  23. 23 A. T. Hanbicki, S.-F. Cheng, R. Goswami, O. M. van‘t Erve, and B. T. Jonker, Solid State Commun. 152, 244 (2012).
  24. 24 K. Harada, K. S. Makabe, H. Akinaga, and T. Suemasu, J. Phys.: Conf. Ser. 266, 012088 (2011).
  25. 25 K. Sakai, T. Sonoda, S. Hirakawa, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 51, 028004 (2012).
  26. 26 K. Sakai, Y. Noda, T. Daio, D. Tsumagari, A. Tominaga, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 53, 02BC15 (2014).
  27. 27 T. Yoshitake, T. Ogawa, D. Nakagauchi, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, K. Takeda, T. Kajiwara, M. Ohashi, G. Oomi, and K. Nagayama, Appl. Phys. Lett. 89, 253110 (2006).
  28. 28 K. Takeda, T. Yoshitake, Y. Sakamoto, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, T. Kajiwara, and K. Nagayama, Appl. Phys. Express 1, 021302 (2008).
  29. 29 S. Hirakawa, T. Sonoda, K. Sakai, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 50, 08JD06 (2011).
  30. 30 K. Takeda, T. Yoshitake, D. Nakagauchi, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, and K. Nagayama, Jpn. J. Appl. Phys. 46, 7846 (2007).