JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011502 (2015) doi:10.7567/JJAPCP.3.011502

Current-induced magnetization switching at low current densities in current-perpendicular-to-plane structural FeSi/FeSi artificial lattices with various cross-sectional areas

Ken-ichiro Sakai1,2, Yūki Asai1, Yūta Noda1, Takeshi Daio3, Aki Tominaga1, Kaoru Takeda4, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Control and Information Systems Engineering, Kurume National College of Technology, Kurume, Fukuoka 830-8555, Japan
  3. 3International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan
  4. 4Department of Electrical Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan
  • Received July 17, 2014
  • PDF (1.4 MB) |

Abstract

Current-perpendicular-to-plane junctions with different cross-sectional areas were fabricated from Fe3Si/FeSi2 artificial lattice films, wherein antiferromagnetic interlayer coupling was induced across the FeSi2 spacer layers, by employing a focused ion beam (FIB) apparatus. Evident hysteresis loops in the electrical resistance for current injection due to current-induced magnetization switching (CIMS) were observed. The average value of critical current densities for inducing CIMS was 2 × 102 A/cm2, which is at least three orders of magnitude smaller than values that have ever been reported. This might be because CIMS in our junctions is induced by the destruction of the AF interlayer coupling, which differs from the general mechanism of CIMS.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
  2. 2 M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
  3. 3 M. Julliere, Phys. Lett. A 54, 225 (1975).
  4. 4 S. Maekawa and U. Gafvert, IEEE Trans. Magn. 18, 707 (1982).
  5. 5 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
  6. 6 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
  7. 7 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
  8. 8 S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nat. Mater. 3, 862 (2004).
  9. 9 D. Chiba, Y. Sato, T. Kita, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 93, 216602 (2004).
  10. 10 R. Moriya, K. Hamaya, A. Oiwa, and H. Munekata, Jpn. J. Appl. Phys. 43, L825 (2004).
  11. 11 M. Watanabe, J. Okabayashi, H. Toyao, T. Yamaguchi, and J. Yoshino, Appl. Phys. Lett. 92, 082506 (2008).
  12. 12 Y. Jiang, Y. Xu, and J. P. Wang, J. Appl. Phys. 105, 07B520 (2009).
  13. 13 D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
  14. 14 M. Shaban, K. Nomoto, S. Izumi, and T. Yoshitake, Appl. Phys. Lett. 94, 222113 (2009).
  15. 15 M. Shaban, H. Kondo, K. Nakashima, and T. Yoshitake, Jpn. J. Appl. Phys. 47, 5420 (2008).
  16. 16 E. E. Fullerton, J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher, S. D. Barder, and F. T. Parker, J. Appl. Phys. 73, 6335 (1993).
  17. 17 K. Inomata, K. Yusu, and Y. Saito, Phys. Rev. Lett. 74, 1863 (1995).
  18. 18 A. Chaiken, R. P. Michel, and M. A. Wall, Phys. Rev. B 53, 5518 (1996).
  19. 19 J. E. Mattson, S. Kumar, E. E. Fullerton, S. R. Lee, C. H. Sowers, M. Grimsditch, S. D. Bader, and F. T. Parker, Phys. Rev. Lett. 71, 185 (1993).
  20. 20 E. E. Fullerton and S. D. Bader, Phys. Rev. B 53, 5112 (1996).
  21. 21 Y. Endo, O. Kitakami, and Y. Shimada, Phys. Rev. B 59, 4279 (1999).
  22. 22 J. Herfort, H. P. Schӧnherr, and K. H. Ploog, Appl. Phys. Lett. 83, 3912 (2003).
  23. 23 J. Herfort, H. P. Schӧnherr, K. J. Friendland, and K. H. Ploog, J. Vac. Sci. Technol. B 22, 2073 (2004).
  24. 24 A. Ionescu, C. A. F. Vaz, T. Trypiniotis, C. M. Gürtler, H. Garcia-Miquel, J. A. C. Bland, M. E. Vickers, R. M. Dalgliesh, S. Langridge, Y. Bugoslavsky, Y. Miyoshi, L. F. Cohen, and K. R. A. Ziebeck, Phys. Rev. B 71, 094401 (2005).
  25. 25 Y. Maeda, T. Jonishi, K. Narumi, Y. Ando, K. Ueda, M. Kumano, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 91, 171910 (2007).
  26. 26 K. Hamaya, K. Ueda, Y. Kishi, Y. Ando, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 93, 132117 (2008).
  27. 27 K. Hamaya, Y. Ando, T. Sadoh, and M. Miyao, Jpn. J. Appl. Phys. 50, 010101 (2011).
  28. 28 T. Sadoh, M. Kumano, R. Kizuka, K. Ueda, A. Kenjo, and M. Miyao, Appl. Phys. Lett. 89, 182511 (2006).
  29. 29 Y. Ando, K. Hamaya, K. Kasahara, K. Ueda, Y. Nozaki, T. Sadoh, Y. Maeda, K. Matsuyama, and M. Miyao, J. Appl. Phys. 105, 07B102 (2009).
  30. 30 Y. Ando, K. Kasahara, K. Yamane, K. Sawano, T. Kimura, and M. Miyao, Appl. Phys. Express 3, 093001 (2010).
  31. 31 K. Hamaya, T. Murakami, S. Yamada, K. Mibu, and M. Miyao, Phys. Rev. B 83, 144411 (2011).
  32. 32 Y. Ando, K. Hamaya, K. Kasahara, Y. Kishi, K. Ueda, K. Sawano, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 94, 182105 (2009).
  33. 33 K. Kasahara, Y. Baba, K. Yamane, Y. Ando, S. Yamada, Y. Hoshi, K. Sawano, M. Miyao, and K. Hamaya, J. Appl. Phys. 111, 07C503 (2012).
  34. 34 A. Kawaharazuka, M. Ramsteiner, J. Herfort, H. P. Schӧnherr, H. Kostial, and K. H. Ploog, Appl. Phys. Lett. 85, 3492 (2004).
  35. 35 K. Harada, K. S. Makabe, H. Akinaga, and T. Suemasu, J. Phys.: Conf. Ser. 266, 012088 (2011).
  36. 36 Y. Fujita, S. Yamada, G. Takemoto, S. Oki, Y. Maeda, M. Miyao, and K. Hamaya, Jpn. J. Appl. Phys. 52, 04CM02 (2013).
  37. 37 Y. Fujita, S. Yamada, Y. Ando, K. Sawano, H. Itoh, M. Miyao, and K. Hamaya, J. Appl. Phys. 113, 013916 (2013).
  38. 38 K. Hamaya, Y. Baba, G. Takemoto, K. Kasahara, S. Yamada, K. Sawano, and M. Miyao, J. Appl. Phys. 113, 183713 (2013).
  39. 39 Y. Ando, K. Ichiba, S. Yamada, E. Shikoh, T. Shinjo, K. Hamaya, and M. Shiraishi, Phys. Rev. B 88, 140406 (2013).
  40. 40 K. Hamaya, G. Takemoto, Y. Baba, K. Kasahara, S. Yamada, K. Sawano, and M. Miyao, Thin Solid Films 557, 382 (2014).
  41. 41 T. Yoshitake, T. Ogawa, D. Nakagauchi, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, K. Takeda, T. Kajiwara, M. Ohashi, G. Oomi, and K. Nagayama, Appl. Phys. Lett. 89, 253110 (2006).
  42. 42 K. Takeda, T. Yoshitake, D. Nakagauchi, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, and K. Nagayama, Jpn. J. Appl. Phys. 46, 7846 (2007).
  43. 43 K. Takeda, T. Yoshitake, Y. Sakamoto, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, T. Kajiwara, and K. Nagayama, Appl. Phys. Express 1, 021302 (2008).
  44. 44 S. Hirakawa, T. Sonoda, K. Sakai, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 50, 08JD06 (2011).
  45. 45 K. Sakai, T. Sonoda, S. Hirakawa, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 51, 028004 (2012).
  46. 46 K. Sakai, Y. Noda, K. Takeda, M. Takeda, and T. Yoshitake, Phys. Status Solidi C 10, 1862 (2013).
  47. 47 K. Sakai, Y. Noda, D. Tsumagari, H. Deguchi, K. Takeda, and T. Yoshitake, Phys. Status Solidi A 211, 323 (2014).
  48. 48 K. Sakai, Y. Noda, T. Daio, D. Tsumagari, A. Tominaga, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 53, 02BC15 (2014).
  49. 49 H. Kubota, Y. Suzuki, and S. Yuasa, Oyo Buturi 78, 231 (2009) [in Japanese].
  50. 50 E. B. Myers, F. J. Albert, J. C. Sankey, E. Bonet, R. A. Buhrman, and D. C. Ralph, Phys. Rev. Lett. 89, 196801 (2002).
  51. 51 F. J. Albert, N. C. Emley, E. B. Myers, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 89, 226802 (2002).
  52. 52 H. Kano, K. Bessho, Y. Higo, K. Ohba, M. Hashimoto, T. Mizuguchi, and M. Hosomi, Intermag Europe, 2002, BB04.
  53. 53 L. Berger, J. Appl. Phys. 93, 7693 (2003).
  54. 54 Y. Jiang, T. Nozaki, S. Abe, T. Ochiai, A. Hirohata, N. Tezuka, and K. Inomata, Nat. Mater. 3, 361 (2004).
  55. 55 Y. Huai, M. Pakala, Z. Diao, and Y. Ding, Appl. Phys. Lett. 87, 222510 (2005).
  56. 56 J. Z. Sun, J. Magn. Magn. Mater. 202, 157 (1999).
  57. 57 T. Iwase, Y. Sakuraba, S. Bosu, K. Saito, S. Mitani, and K. Takanashi, Appl. Phys. Express 2, 063003 (2009).
  58. 58 A. Srinivasan, A. Rajanikanth, Y. K. Takahashi, and K. Hono, J. Alloys Compd. 514, 195 (2012).
  59. 59 A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 372 (2012).
  60. 60 Y. Jiang, N. Tezuka, and K. Inomata, Appl. Phys. Lett. 89, 122514 (2006).
  61. 61 J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
  62. 62 L. Berger, Phys. Rev. B 54, 9353 (1996).
  63. 63 E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867 (1999).
  64. 64 K. Takarabe, H. Doi, Y. Mori, K. Fukui, Y. Shim, N. Yamamoto, T. Yoshitake, and K. Nagayama, Appl. Phys. Lett. 88, 061911 (2006).
  65. 65 N. Promros, K. Yamashita, C. Li, K. Kawai, M. Shaban, T. Okajima, and T. Yoshitake, Jpn. J. Appl. Phys. 51, 021301 (2012).