JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011503 (2015) doi:10.7567/JJAPCP.3.011503

Observation of magnetization alignment switching in FeSi/FeSi artificial lattices by polarized neutron reflection

Ken-ichiro Sakai1,2, Yūki Asai1, Masayasu Takeda3, Kazuya Ishibashi1, Yūta Noda1, Kaoru Takeda4, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Control and Information Systems Engineering, Kurume National College of Technology, Kurume, Fukuoka 830-8555, Japan
  3. 3Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
  4. 4Department of Electrical Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan
  • Received July 17, 2014
  • PDF (791 KB) |

Abstract

One of the most powerful and reliable methods to directly observe the switching of interlayer coupling magnetization in multilayer films is polarized neutron reflection. In this study, polarized neutron reflection was employed for artificial lattices comprising alternately accumulated ferromagnetic Fe3Si and semiconducting FeSi2 layers prepared by facing-targets direct-current sputtering. The switching of interlayer coupling magnetizations was directly observed, which was well consistent with that expected form the magnetization curves.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
  2. 2 M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
  3. 3 M. Julliere, Phys. Lett. A 54, 225 (1975).
  4. 4 S. Maekawa and U. Gafvert, IEEE Trans. Magn. 18, 707 (1982).
  5. 5 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
  6. 6 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
  7. 7 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
  8. 8 S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nat. Mater. 3, 862 (2004).
  9. 9 T. Yoshitake, T. Ogawa, D. Nakagauchi, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, K. Takeda, T. Kajiwara, M. Ohashi, G. Oomi, and K. Nagayama, Appl. Phys. Lett. 89, 253110 (2006).
  10. 10 K. Takeda, T. Yoshitake, D. Nakagauchi, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, and K. Nagayama, Jpn. J. Appl. Phys. 46, 7846 (2007).
  11. 11 K. Takeda, T. Yoshitake, Y. Sakamoto, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, T. Kajiwara, and K. Nagayama, Appl. Phys. Express 1, 021302 (2008).
  12. 12 S. Hirakawa, T. Sonoda, K. Sakai, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 50, 08JD06 (2011).
  13. 13 K. Sakai, T. Sonoda, S. Hirakawa, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 51, 028004 (2012).
  14. 14 K. Sakai, Y. Noda, K. Takeda, M. Takeda, and T. Yoshitake, Phys. Status Solidi C 10, 1862 (2013).
  15. 15 K. Sakai, Y. Noda, D. Tsumagari, H. Deguchi, K. Takeda, and T. Yoshitake, Phys. Status Solidi A 211, 323 (2014).
  16. 16 K. Sakai, Y. Noda, T. Daio, D. Tsumagari, A. Tominaga, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 53, 02BC15 (2014).
  17. 17 A. Cebollada, J. L. Martinez, J. M. Gallego, J. J. de Miguel, R. Miranda, S. Ferrer, F. Batallan, G. Fillion, and J. P. Rebouillat, Phys. Rev. B 39, 9726 (1989).
  18. 18 N. Hosoito, S. Araki, K. Mibu, and T. Shinjo, J. Phys. Soc. Jpn. 59, 1925 (1990).