JJAP Conference Proceedings

JJAP Conf. Proc. 3, 011504 (2015) doi:10.7567/JJAPCP.3.011504

Spin valve behavior in current-perpendicular-to-plane crossover structural FeSi/FeSi/FeSi trilayered junctions

Yuki Asai1, Ken-ichiro Sakai1,2, Kazuya Ishibashi1, Kaoru Takeda3, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Control and Information Systems Engineering, Kurume National College of Technology, Kurume, Fukuoka 830-8555, Japan
  3. 3Department of Electrical Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan
  • Received July 31, 2014
  • PDF (1.2 MB) |

Abstract

Current-perpendicular-to-plane structural Fe3Si/FeSi2/Fe3Si trilayered junctions were prepared on Si(111) by facing targets direct-current sputtering combined with a mask method. The shape of magnetization curves evidently exhibited that an antiparallel alignment is realized owing to a difference in the coercive force between the top and bottom Fe3Si layers. In addition, it was demonstrated that the antiparallel alignment in the wide range of applied magnetic field can be realized by forming a crossover structure, which is owing to an enhanced difference in the effective magnetic field between the top and bottom Fe3Si layers aligned perpendicularly to each other.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
  2. 2 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988).
  3. 3 M. Julliere, Phys. Lett. A 54, 225 (1975).
  4. 4 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
  5. 5 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
  6. 6 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 151, 403 (1995).
  7. 7 K. Inomata, S. Okamura, R. Goto, and N. Tezuka, Jpn. J. Appl. Phys. 42, L419 (2003).
  8. 8 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
  9. 9 R. Moriya, K. Hamaya, A. Oiwa, and H. Munekata, Jpn. J. Appl. Phys. 43, L825 (2004).
  10. 10 T. Sadoh, T. Takeuchi, K. Ueda, A. Kenjo, and M. Miyao, Jpn. J. Appl. Phys. 45, 3598 (2006).
  11. 11 Y. Jing, Y. Xu, and J.-P. Wang, J. Appl. Phys. 105, 07B520 (2009).
  12. 12 M. Shaban, H. Kondo, K. Nakashima, and T. Yoshitake, Jpn. J. Appl. Phys. 47, 5420 (2008).
  13. 13 E. E. Fullerton, J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher, S. D. Bader, and F. T. Parker, J. Appl. Phys. 73, 6335 (1993).
  14. 14 K. Inomata, K. Yusu, and Y. Saito, Phys. Rev. Lett. 74, 1863 (1995).
  15. 15 A. Chaiken, R. P. Michel, and M. A. Wall, Phys. Rev. B 53, 5518 (1996).
  16. 16 Y. Endo, O. Kitakami, and Y. Shimada, Phys. Rev. B 59, 4279 (1999).
  17. 17 W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
  18. 18 V. Jelinek, Tectonophysics 79, T63 (1981).
  19. 19 A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).
  20. 20 Q. Song and Z. J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004).