JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011101 (2016) doi:10.7567/JJAPCP.4.011101

Ferroelectric core/magnetic shell approach to control electric properties of composites

Maxim M. Sychov1,2, Olga A. Shilova1,2, Polina V. Matveichikova1,2, Tamara V. Khamova2, Ekaterina S. Vasina1, Semen V. Diachenko1, Alexandr I. Zhernovoy1, Gennady P. Kopitsa3

  1. 1St. Petersburg State Institute of Technology, Technical University, St. Petersburg, Russia
  2. 2I.V.Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, St. Petersburg, Russia
  3. 3National Research Centre, Kurchatov Institute, B. P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Russia
  • Received October 12, 2015
  • PDF (886 KB) |

Abstract

Electrical properties of polymer-inorganic nanocomposites depend strongly on their structure, i.e., distribution of filler phase in a polymer matrix. This factor is especially important in the case of composites consisting of two phases with significantly different properties. To improve electric properties of such composites in this study ferroelectric core/magnetic shell approach is suggested. BaTiO3 core was coated with a SiO2–CoFe2O4 magnetic shell followed by incorporation of thus obtained core/shell particles into a polymer in the presence of external magnetic field to obtain composites featuring with a significantly increased dielectric permittivity. The developed composites may find various applications including embedded capacitors and other electronics devices, as well as sensors, electromagnetic radiation shields etc.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 M. M. Sychov et al., Chem. Lett. 44, 197 (2015).
  2. 2 O. A. Cheremisina, M. M. Sychev, S. V. Myakin, V. G. Korsakov, V. V. Popov, and N. Yu. Artsutanov, Russ. J. Phys. Chem. A 76, 1472 (2002); D. Zhou et al., Appl. Surf. Sci. 257, 7621 (2011).
  3. 3 H. Zheng et al., Science 303, 661 (2004).
  4. 4 I. Fina et al., J. Appl. Phys. 108, 034108 (2010).
  5. 5 L. Zhang et al., Ferroelectrics 406, 213 (2010).
  6. 6 M. M. Selvi et al., J. Magn. Magn. Mater. 369, 155 (2014).
  7. 7 S. V. Myakin, V. G. Korsakov, T. I. Panova et al., Glass Phys. Chem. 37, 624 (2011).
  8. 8 U. M. Tairov and O. A. Shilova, Monograph–St. Petersburg, 2007, p. 255.
  9. 9 A. I. Zhernovoy, V. N. Naumov, and Yu. R. Rudakov, Paramagnetic nanoglobules dispersion curve definition via magnetization and magnetizable field using NMR method // 2009, T. 19, N°3, p.57–61.
  10. 10 J. K. Nelson and J. C. Fothergill, Nanotechnology 15, 586 (2004).