JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011102 (2016) doi:10.7567/JJAPCP.4.011102

Effect of spray conditions on formation of one-dimensional fluorine-doped tin oxide thin films

Ajith Bandara1, R. M. G. Rajapakse2, Masayuki Okuya3, Masaru Shimomura3, Kenji Murakami3

  1. 1Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8011, Japan
  2. 2Department of Chemistry, University of Peradeniya, Peradeniya 20400, Sri Lanka
  3. 3Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8011, Japan
  • Received October 08, 2015
  • PDF (1.2 MB) |

Abstract

This paper describes the preparation and characterization of optically-transparent thin films of fluoride-doped tin oxide (FTO) nanoparticles, nanotubes and nanorods grown using purpose-built, novel and advanced version of spray pyrolysis technique, known as Rotational, Pulsed and Atomized Spray Pyrolysis. Uniform and crack-free FTO1-D nanostructured thin films over 50 × 50 mm2 soda lime glass substrate have been routinely achieved. This technique allows a perfect control of morphology of nanostructures of FTO layer simply by adjusting the spray conditions. Formed 1D FTO nanostructures on the glass substrate show an excellent optical transparency in the visible light range. XRD (X-ray diffraction) and SEM (scanning electron microscope) data show excellent correlations.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 D. S. Ginley and C. Bright, MRS Bull. 25 [08], 15 (2000).
  2. 2 T. Minami, MRS Bull. 25 [08], 38 (2000).
  3. 3 B. Russo and G. Z. Cao, Appl. Phys. A 90, 311 (2008).
  4. 4 H. Kawazoe et al., MRS Bull. 25 [08], 28 (2000).
  5. 5 A. N. Banerjee and K. K. Chattopadhyay, Prog. Cryst. Growth Charact. Mater. 50, 52 (2005).
  6. 6 A. Kumar and C. Zhou, ACS Nano 4, 11 (2010).
  7. 7 F. Wang, N. K. Subbaiyan, Q. Wang, C. Rochford, G. Xu, R. Lu, A. Elliot, F. D’Souza, R. Hui, and J. Wu, ACS Appl. Mater. Interfaces 4, 1565 (2012).
  8. 8 D. Zhou and R. J. Biswas, Appl. Phys. 103, 093102 (2008).
  9. 9 Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neala, K. Yu, M. Wu, J. W. Ager, and A. Javey, Nat. Mater. 8, 648 (2009).
  10. 10 A. Forleo, L. Francioso, S. Capone, F. Casino, P. Siciliano, O. K. Tan, and H. Hui, Sens. Actuators B 154, 283 (2011).
  11. 11 G. Cheng, J. Chen, H. Ke, J. Shang, and R. Chu, Mater. Lett. 65, 3327 (2011).
  12. 12 C.-W. Cho, J.-H. Lee, D.-H. Riu, and C.-Y. Kim, Jpn. J. Appl. Phys. 51, 045001 (2012).
  13. 13 D. Liyanage, H. M. N. Bandara, V. Jayaweera, and K. Murakami, Appl. Phys. Express 6, 085501 (2013).
  14. 14 K. Reichelt and X. Jiang, Thin Solid Films 191, 91 (1990).
  15. 15 I. G. Brown, Annu. Rev. Mater. Sci. 28, 243 (1998).
  16. 16 J. R. Nicholls, M. J. Deakin, and D. S. Rickerby, Wear 233–235, 352 (1999).
  17. 17 Z. W. Chen, J. K. L. Lai, and C. H. Shek, Phys. Lett. A 345, 218 (2005).
  18. 18 N. Y. Shishkin, I. M. Zharsky, V. G. Lugin, and V. G. Zarapin, Sens. Actuators B 48, 403 (1998).
  19. 19 D. Merche, N. Vandencasteele, and F. Reniers, Thin Solid Films 520, 4219 (2012).
  20. 20 K. L. Choy, Prog. Mater. Sci. 48, 57 (2003).
  21. 21 P. S. Patil, Mater. Chem. Phys. 59, 185 (1999).
  22. 22 T. Osaka, N. Takano, and T. Yokoshima, Surf. Coatings Technol. 169–170, 1 (2003).
  23. 23 J. Livage, Curr. Opin. Solid State Mater. Sci. 2, 132 (1997).