JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011103 (2016) doi:10.7567/JJAPCP.4.011103

Optimization of ZnO seed layer for growth of vertically aligned ZnO nanorods on glass surface

Albertus Bramantyo1, Nji Raden Poespawati2, Murakami Kenji3

  1. 1Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
  2. 2Department of Electrical Engineering, Universitas Indonesia, Depok, Indonesia
  3. 3Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
  • Received October 09, 2015
  • PDF (1.0 MB) |

Abstract

Vertically well aligned zinc oxide (ZnO) nanorods have been developed for the application to photoanode of dye-sensitized solar cells (DSCs). For the growth of the ZnO nanorods, a seed layer is necessary. Spin coating and chemical bath deposition methods are chosen to form the seed layer and the ZnO nanorods, respectively. The effects of speed and cycle number of spin coating are investigated. The most optimized nanorods was found at seed layer with growing conditions of 3000 RPM rotational speed repeated for 3 times. The SEM image shows the longest length at 1.5–2 µm length while the XRD chart shows considerable peak at (002) crystallinity.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 W. Peng, L. Han, and Z. Wang, Chem.—Eur. J. 20, 8483 (2014).
  2. 2 M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, and C. Lee, J. Mater. Sci.: Mater. Electron. 24, 1921 (2013).
  3. 3 C. Dwivedi and V. Dutta, Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 015011 (2012).
  4. 4 J. Song and S. Lim, J. Phys. Chem. C 111, 596 (2007).
  5. 5 X. Fang, Y. Li, S. Zhanga, L. Bai, N. Yuan, and J. Ding, Sol. Energy 105, 14 (2014).
  6. 6 T. A. Nirmal Peiris, H. Alessa, J. S. Sagu, I. A. Bhatti, P. Isherwood, and K. G. Upul Wijayantha, J. Nanopart. Res. 15, 2115 (2013).
  7. 7 H. Zhitao, L. Sisi, L. Junjun, C. Jinkui, and C. Yong, J. Semicond. 34, 074002 (2013).
  8. 8 T. H. Meen, W. Water, Y. S. Chen, W. R. Chen, L. W. Ji, and C. J. Huang, IEEE Conf. Electron Devices and Solid-State Circuits (EDSSC), 2007, p. 617.
  9. 9 L. Schlur, A. Carton, P. Lévêque, D. Guillon, and G. Pourroy, J. Phys. Chem. C 117, 2993 (2013).
  10. 10 H. Ghayour, H. R. Rezaie, S. Mirdamadi, and A. A. Nourbakhsh, Vacuum 86, 101 (2011).
  11. 11 B. İkizler and S. M. Peker, Thin Solid Films 558, 149 (2014).
  12. 12 K. A. Wahid, W. Y. Lee, H. W. Lee, A. S. Teh, D. C. S. Bien, and I. A. Azid, Appl. Surf. Sci. 283, 629 (2013).