JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011106 (2016) doi:10.7567/JJAPCP.4.011106

Laser-induced incandescence of rough carbon surfaces

Kateryna S. Zelenska1, Serge E. Zelensky2, Alexander V. Kopyshinsky2, Stanislav G. Rozouvan2, Toru Aoki3

  1. 1Educational and Scientific Centre, Institute of Biology, Taras Shevchenko National University of Kyiv, Prospekt Akademika Glushkova 2, Kyiv 03127, Ukraine
  2. 2Faculty of Physics, Taras Shevchenko National University of Kyiv, Prospekt Akademika Glushkova 4, Kyiv 03127, Ukraine
  3. 3Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011, Japan
  • Received October 12, 2015
  • PDF (1.2 MB) |


Laser-induced incandescence (LII) of rough carbon surfaces was studied under the Q-switched YAG:Nd laser excitation. For the surfaces irradiated by a sequence of laser pulses, the non-monotonic behavior of LII intensity with the increase of number of irradiating laser pulses was observed. Computer simulation of pulsed laser heating of rough carbon surfaces revealed essential non-uniformity of the temperature field on the irradiated surface hence the surface relief is affected by the laser irradiation due to the processes of evaporation of the peaks on the irradiated surface. The intensity of LII was calculated as a function of height of the surface roughness. The results of calculations explain the observed features of LII of carbon surfaces.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, Appl. Phys. B 83, 333 (2006).
  2. 2 R. L. Vander Wal, Appl. Phys. B 96, 601 (2009).
  3. 3 J. J. Rulik, N. M. Mikhailenko, S. E. Zelensky, and A. S. Kolesnik, Semicond. Phys. Quantum Electron. Optoelectron. 10, 6 (2007).
  4. 4 S. Zelensky, J. Phys.: Condens. Matter 10, 7267 (1998).
  5. 5 S. E. Zelensky, A. S. Kolesnik, A. V. Kopyshinsky, V. V. Garashchenko, K. S. Zelenska, V. M. Stadnytskyi, and E. V. Shinkarenko, Ukr. J. Phys. 54, 983 (2009).
  6. 6 S. E. Zelensky and K. S. Zelenska, Proc. SPIE, 8772, SPIE Optics+Optoelectronics, Prague, Czech Republic, 2013, 87721P-1.
  7. 7 S. E. Zelensky, L. V. Poperenko, A. V. Kopyshinsky, and K. S. Zelenska, Proc. SPIE, 8434, SPIE Photonics Europe, Brussels, Belgium, 2012, 84341H-1.
  8. 8 K. S. Zelenska, A. V. Kopyshinsky, and L. V. Poperenko, Photonics Technologies, 2014 Fotonica AEIT Italian Conf. IEEE, Naples, Italy,2014, p. 1.
  9. 9 H.-J. Hagemann, W. Gudat, and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975).