JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011107 (2016) doi:10.7567/JJAPCP.4.011107

Numerical simulation of InGaSb crystals growth under microgravity onboard the international space station

Xin Jin1, Haryo Mirsandi1, Takuya Yamamoto1, Youhei Takagi1, Yasunori Okano1,2, Yuko Inatomi2,3, Yasuhiro Hayakawa4, Sadik Dost5

  1. 1Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka, Japan
  2. 2ISAS, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
  3. 3School of Physical Sciences, SOKENDAI, Sagamihara, Kanagawa, Japan
  4. 4Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka, Japan
  5. 5Crystal Growth Laboratory, University of Victoria, Victoria, BC, Canada
  • Received October 05, 2015
  • PDF (744 KB) |


InxGa1−xSb bulk crystal was grown using a GaSb (seed)/InSb/GaSb (feed) sandwich-structured system onboard the International Space Station (ISS). In order to investigate the transport phenomena especially in terms of interface shapes and dissolution heights, the dissolution process was simulated under a micro-gravity level of the ISS. Simulation results showed that the seed/melt interface was concave towards the seed due to the temperature distribution of the system. This prediction is in good agreement with the results of our previous experimental study.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 N. Murakami, K. Arafune, T. Koyama, M. Kumagawa, and Y. Hayakawa, J. Cryst. Growth 275, 433 (2005).
  2. 2 P. S. Dutta and A. G. Ostrogorsky, J. Cryst. Growth 194, 1 (1998).
  3. 3 Y. Hayakawa, Y. Okano, A. Hirata, N. Imaishi, Y. Kumagiri, X. Zhong, X. Xie, B. Yuan, F. Wu, H. Liu, T. Yamaguchi, and M. Kumagawa, J. Cryst. Growth 213, 40 (2000).
  4. 4 T. Duffar, M. D. Serrano, C. D. Moore, J. Camassel, S. Contreras, P. Dusserre, A. Rivoallant, and B. K. Tanner, J. Cryst. Growth 192, 63 (1998).
  5. 5 G. Rajesh, M. Arivanandhan, H. Morii, T. Aoki, T. Koyama, Y. Momose, A. Tanaka, T. Ozawa, Y. Inatomi, and Y. Hayakawa, J. Cryst. Growth 312, 2677 (2010).
  6. 6 G. Rajesh, M. Arivanandhan, N. Suzuki, A. Tanaka, H. Morii, T. Aoki, T. Koyama, Y. Momose, T. Ozawa, Y. Inatomi, Y. Takagi, Y. Okano, and Y. Hayakawa, J. Cryst. Growth 324, 157 (2011).
  7. 7 Y. Takagi, N. Suzuki, Y. Okano, A. Tanaka, Y. Hayakawa, and S. Dost, Trans. JSASS Aerospace Tech. Japan 10, Ph_1 (2012).
  8. 8 M. Nobeoka, Y. Takagi, Y. Okano, Y. Hayakawa, and S. Dost, J. Cryst. Growth 385, 66 (2014).
  9. 9 H. Mirsandi, T. Yamamoto, Y. Takagi, Y. Okano, Y. Inatomi, Y. Hayakawa, and S. Dost, Microgravity Sci. Technol. (in press).
  10. 10 Y. Inatomi, K. Sakata, M. Arivanandhan, G. Rajesh, V. Nirmal Kumar, T. Koyama, Y. Ozawa, Y. Okano, and Y. Hayakawa, npj Microgravity 1, 15011 (2015).
  11. 11 I. Demirdžić and M. Perić, Int. J. Numer. Methods Fluids 8, 1037 (1988).
  12. 12 C. Beckermann and R. Viskanta, Physicochem. Hydrodyn. 10, 195 (1988).
  13. 13 X. Jin, H. Mirsandi, T. Yamamoto, Y. Takagi, Y. Okano, Y. Inatomi, Y. Hayakawa, and S. Dost, Proc.30th Int. Symposium on Space Technology and Science R1300638, 2015.
  14. 14 Y. Sato, T. Nishizuka, T. Takamizawa, T. Yamamura, and Y. Waseda, Int. J. Thermophys. 23, 235 (2002).
  15. 15 C. Stelian, T. Duffar, and I. Nicoara, J. Cryst. Growth 255, 40 (2003).
  16. 16 K. Abe, S. Sumioka, K.-I. Sugioka, M. Kubo, T. Tsukada, K. Kinoshita, Y. Arai, and Y. Inatomi, J. Cryst. Growth 402, 71 (2014).
  17. 17 C. J. Vreeman and F. P. Incropera, Numer. Heat Transfer, Part B 36, 1 (1999).
  18. 18 R. I. Issa, J. Comput. Phys. 62, 40 (1986).