JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011108 (2016) doi:10.7567/JJAPCP.4.011108

Microwave synthesis of Eu-doped silicate phosphors

Igor A. Turkin1, Mariia V. Keskinova1, Maxim M. Sychov1, Konstantin A. Ogurtsov1, Kazuhiko Hara2, Yoichiro Nakanishi2, Olga A. Shilova3

  1. 1Saint-Petersburg Institute of Technology, Technical University, Russia
  2. 2Research Institute of Electronics, Shizuoka University, Japan
  3. 3Institute of Silicate Chemistry of RAS, Saint-Petersburg, Russia
  • Received January 01, 1970
  • PDF (910 KB) |

Abstract

A series of Eu-doped silicate phosphors was prepared in a microwave furnace using different charge mixture preparation methods. Synthesis parameters (time and power) were optimized to increase the yield and brightness of phosphors featuring with a “warm” white luminescence. The charge mixture prepared using sol–gel process provided phosphor with enhanced brightness compared with a solid phase preparation technique supposedly due to more uniform distribution and better introduction of the activator into the phosphor. White LED prototype was fabricated using synthesized phosphor.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 T. Kozaki, S. Koga, N. Toda, H. Noguchi, and A. Yasukouchi, Neurosci. Lett. 439, 256 (2008).
  2. 2 M. Rea, M. Figueiro, A. Bierman, and J. Bullough, J. Circadian Rhythms 8, 2 (2010).
  3. 3 V. V. Bakhmetyev, K. A. Ogurtsov, M. M. Sychov, A. A. Kotomin, S. A. Dushenok, A. S. Kozlov, and G. Xu, Inorganic Materials 48, 884 (2012).
  4. 4 M. Sychov, K. Ogurtsov, A. Ponyaev, Y. Nakanishi, H. Kominami, K. Hara, and H. Mimura, J. Lumin. 156, 69 (2014).
  5. 5 H.-Y. Chen, M.-H. Weng, S.-J. Chang, and R.-Y. Yang, Ceram. Int. 38, 125 (2012).
  6. 6 M. V. Keskinova, K. A. Ogurtsov, M. M. Sychov, E. V. Kolobkova, I. A. Turkin, Y. Nakanishi, and K. Hara, Adv. Mater. Res. 1117, 48 (2015).
  7. 7 Y. Sasaki, H. Daicho, S. Auyagi, and H. Sawa, US Patent 0,256,222 (2012).
  8. 8 T. Aitasalo, J. Holsa, and T. Laamanen, Ceramics, 49 (2005).
  9. 9 J. H. Lee and Y. J. Kim, Mater. Sci. Eng. B, 146, (2008).
  10. 10 J. Wang, G. Li, S. Tian, F. Liao, and X. Jing, Mater. Res. Bull. 36, 2051 (2001).
  11. 11 Z. Xia, J. Sun, and T. Laamanen, Opt. Mater., 28 (2006).
  12. 12 O. U. Vasina, Ph.D. thesis, D. Mendeleyev University of Chemical Technology of Russia, Moscow, 2003.
  13. 13 P. D. Ramesh, D. Brandon, and L. Schächter, Mater. Sci. Eng. A 266, 211 (1999).
  14. 14 M. A. Janney, H. D. Kimrey, and J. O. Kiggins, MRS Symp. Proc. 269, (1992).
  15. 15 J. H. Lee and Y. J. Kim, Mater. Sci. Eng. B 146, 99 (2008).
  16. 16 S. K. Gupta, S. Niqam, A. K. Yadav, M. Mohapatra, S. N. Jha, C. Majumder, and D. Bhattacharyya, New J. Chem. 39, 6531 (2015).
  17. 17 K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Vigt, Appl. Phys. Lett. 68, 403 (1996).