JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011109 (2016) doi:10.7567/JJAPCP.4.011109

Bio-based nanomaterials–versatile materials for industrial and biomedical applications

Linda Vecbiskena1,2, Linda Rozenberga1,2, Laura Vikele1,3, Sergei Vlasov4, Marianna Laka1

  1. 1Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., Riga LV-1006, Latvia
  2. 2Riga Technical University, 3/7 Paula Valdena St., Riga LV-1048, Latvia
  3. 3University of Latvia, 5 Baznicas St., Riga LV-1010, Latvia
  4. 4Institute of Physics, University of Tartu, Ravila 14c, Tartu 50412, Estonia
  • Received September 28, 2015
  • PDF (916 KB) |


In this work, unmodified bacterial cellulose pellicles, biosynthesized by the bacterium Komagataeibacter rhaeticus, bleached birch Kraft pulp (Södra Cell AB, Sweden) and birch bark supplied by the plywood industry (JSC Latvijas Finieris, Latvia), were used to obtain the nanoparticles. The results showed that cellulose nanoparticles fabricated by the ammonium persulfate oxidation method, an alternative method developed at the Latvian State Institute of Wood Chemistry, are promising constituents for producing nanopaper. Cellulose and birch bark nanofillers show the potential to improve the physical-mechanical and biological properties of chitosan-matrix films.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 K. Y. Lee, Y. Aitomaki, L. A. Berglund, K. Oksman, and A. Bismarck, Compos. Sci. Technol. 105, 15 (2014).
  2. 2 R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Chem. Soc. Rev. 40, 3941 (2011).
  3. 3 C. Johansson, J. Bras, I. Mondragon, P. Nechita, D. Plackett, P. Šimon, D. G. Svetec, S. Virtanen, M. G. Baschetti, C. Breen, F. Clegg, and S. Aucejo, BioResources 7, 2506 (2012).
  4. 4 N. Lin and A. Dufresne, Eur. Polym. J. 59, 302 (2014).
  5. 5 J. Schmid, V. Sieber, and B. Rehm, Front. Microbiol. 6, 1 (2015).
  6. 6 A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gatenholm, Biomaterials 26, 419 (2005).
  7. 7 N. Shah, M. Ul-Islam, W. A. Khattak, and J. K. Park, Carbohydr. Polym. 98, 1585 (2013).
  8. 8 J. H. Hamman, Mar. Drugs 8, 1305 (2010).
  9. 9 A. B. Reis, C. M. P. Yoshida, A. P. C. Reis, and T. T. Franco, Polym. Int. 60, 963 (2011).
  10. 10 M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Prog. Polym. Sci. 36, 981 (2011).
  11. 11 L. Rozenberga, L. Vikele, L. Vecbiskena, I. Sable, M. Laka, and U. Grinfelds, Key Eng. Mater. 674, 21 (2016).
  12. 12 T. Taut, R. Kleeberg, and J. Bergmann, Mater. Struct. 5, 57 (1998).
  13. 13 M. Poletto, H. L. Ornaghi Junior, and A. J. Zattera, Materials (Basel) 7, 6105 (2014).
  14. 14 A. Z. Abyshev, E. M. Agaev, and A. B. Guseinov, Pharm. Chem. J. 41, 419 (2007).
  15. 15 S. H. Kim, C. M. Lee, and K. Kafle, Korean J. Chem. Eng. 30, 2127 (2013).