JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011112 (2016) doi:10.7567/JJAPCP.4.011112

The equilibrium state of bifilar helix as element of metamaterials

Igor V. Semchenko1, Sergei A. Khakhomov1, Andey L. Samofalov1, Qian Songsong2

  1. 1Francisk Skorina Gomel State University, Gomel, Belarus
  2. 2Nanjing University of Science and Technology, Nanjing, China
  • Received September 16, 2015
  • PDF (893 KB) |


In the present article, we study the long bifilar helix in which electric currents are quasi-stationary, i.e., the wavelength of the electromagnetic field is much longer than the turn of the helix. All components of the force acting on a physically small element of one helix from the other helix having a big length are calculated. The case when the currents in the two helices have the same direction relative to the x-axis is considered. The dependence of the radial component of the force of interaction between two helices on the pitch angle is determined. At various pitch angles the helices can attract and repel each other while the direction of the current does not change. It is found the value of pitch angle when two helices do not interact and bifilar helix, formed by them, is in equilibrium state.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, Phys. Rev. X 5, 031005 (2015).
  2. 2 T. Dziarzhauskaya, I. Semchenko, and S. Khakhomov, Adv. Mater. Res. 1117, 122 (2015).
  3. 3 I. Semchenko, S. Khakhomov, A. Balmakou, and S. Tretyakov, EPJ Appl. Metamat. 1, 4 (2014).
  4. 4 I. V. Semchenko, S. A. Khakhomov, E. V. Naumova, V. Ya. Prinz, S. V. Golod, and V. V. Kubarev, Crystallogr. Rep. 56, 366 (2011).
  5. 5 I. V. Semchenko, S. A. Khakhomov, V. S. Asadchy, E. V. Naumova, V. Ya. Prinz, S. V. Golod, A. G. Milekhin, A. M. Goncharenko, and G. V. Sinitsyn, Crystallogr. Rep. 59, 480 (2014).
  6. 6 A. Balmakov and I. Semchenko, DNA-like metamaterials: observation of polarization selectivity of electromagnetic properties, Proc. of Metamaterials, 2008, Pamplona, Spain, 21–26 September.
  7. 7 S. A. Khakhomov, I. V. Semchenko, A. P. Balmakou, and M. Nagatsu, Proc. of Metamaterials’2012, 2012, The Sixth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, p. 309.
  8. 8 I. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, Russ. Phys. J. 52, 472 (2009).
  9. 9 I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, and A. H. Sihvola, Electromagnetics 21, 401 (2001).
  10. 10 I. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, Proc. of META’08, 2008, NATO Advanced Research Workshop, Metamaterials for Secure Information and Communication Technologies 7–10 May, Marrakesh – Morocco, p. 71.
  11. 11 I. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, Proc. of Bianasotropics’ 2004, 2004, 10th International Conference on Complex Media and Metamaterials, 22–24 September, Het Pand, Chent, Belgium, p. 236.
  12. 12 A. Shiri, D. E. Moghadam, R. A. P. Mohammad, and A. Shoulaie, J. Electromagnetic Analysis & Applications 2, 311 (2010).
  13. 13 M. Lapine, I. Shadrivov, and A. David, Sci. Rep. 1, 138 (2011).
  14. 14 C. Snow, Research Paper RP1178, Part of Journal of Research of the National Bureau of Standards, Vol. 22, p. 239 (1939).
  15. 15 J. R. Hofmann, Andre-Marie Ampere: Enlightenment and Electrodynamics (Cambridge University Press, 1995) p. 237.