JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011202 (2016) doi:10.7567/JJAPCP.4.011202

Microplasma actuator for active flow control: Experiment and simulation

Kazuo Shimizu1, Yoshinori Mizuno2, Akihiko Ito3, Marius Blajan1

  1. 1Organization for Innovation and Social Collaboration, Shizuoka University, Hamamatsu, Japan
  2. 2Asahi Kogyosha Company, Tokyo, Japan
  3. 3Graduate School of Engineering, Shizuoka University, Hamamatsu, Japan
  • Received October 09, 2015
  • PDF (1.3 MB) |

Abstract

Dielectric Barrier Discharge microplasma actuator energized at low discharge voltage at about 1.4 kV was applied for flow modification. Due to the microplasma generation, the flow velocity showed different characteristics at various duty ratios of the applied voltage. The observation with the high speed camera showed at various time intervals the modification of the flow due to the microplasma. The numerical simulation of the flow was carried out using Suzen model which is assuming that the electric potential of plasma actuator potential can be split in the potential due to the external electric field and potential due to the charge density of plasma.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 J. R. Roth and X. Dai, AIAA, 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.
  2. 2 J. Jolibois, M. Forte, and E. Moreau, J. Electrostatics 66, 496 (2008).
  3. 3 L. Zhao and K. Adamiak, Proc. 2009 Electrostatics Joint Conf., Boston, America, 2009, P2.13.
  4. 4 D. F. Colas, A. Ferret, D. Z. Pai, D. A. Lacoste, and C. O. Laux, J. Appl. Phys. 108, 103306 (2010).
  5. 5 M. Robinson, Trans. Am. Inst. Electr. Eng. 80, 143 (1961).
  6. 6 M. S. June, J. Kribs, and K. M. Lyons, J. Electrostatics 69, 345 (2011).
  7. 7 C. Kim, D. Park, K. C. Noh, and J. Hwang, J. Electrostatics 68, 36 (2010).
  8. 8 G. Touchard, IJPEST 2, 1 (2008).
  9. 9 R. Mestiri, A. Koched, F. Aloui, R. Hadaji, M. Pavageau, and S. B. Nasrallah, Satreset 1, 124 (2011).
  10. 10 R. Whalley and K.-S. Choi, 5th Flow Control Conf., Chicago, Illinois, AIAA 2010-4840, 2010.
  11. 11 K.-S. Choi, T. Jukes, and R. Whaley, Philos. Trans. R. Soc. A 369, 1443 (2011).
  12. 12 C.-C. Wang and S. Roy, J. Appl. Phys. 106, 013310 (2009).
  13. 13 C.-C. Wang and S. Roy, J. Appl. Phys. 111, 103302 (2012).
  14. 14 W. Shyy, B. Jayaraman, and A. Andersson, J. Appl. Phys. 92, 6434 (2002).
  15. 15 K. Shimizu, Y. Mizuno, and M. Blajan, Jpn. J. Appl. Phys. 54, 01AA07 (2015).
  16. 16 K. Shimizu, T. Kuwabara, and M. Blajan, Sensors 12, 14525 (2012).
  17. 17 K. Shimizu, M. Blajan, and S. Tatematsu, IEEE Trans. Ind. Appl. 48, 1182 (2012).
  18. 18 M. Blajan, A. Umeda, S. Muramatsu, and K. Shimizu, IEEE Trans. Ind. Appl. 47, 1100 (2011).
  19. 19 N. Bénard, J. Jolibois, E. Moreau, R. Sosa, G. Artana, and G. Touchard, Thin Solid Films 516, 6660 (2008).
  20. 20 C. Porter, A. Abbas, K. Cohen, T. McLaughlin, and C. L. Enloe, AIAA J. 47, 1368 (2009).
  21. 21 B. L. Smith and A. Glezer, J. Fluid Mech. 458, 1 (2002).
  22. 22 Y. B. Suzen, P. G. Huang, J. D. Jacob, and D. E. Ashpis, 35th Fluid Dynamics Conf. and Exhibit, Toronto, Ontario, AIAA 2005-4633, 2005.
  23. 23 Y. B. Suzen, P. G. Huang, and D. E. Ashpis, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA 2007-937, 2007.
  24. 24 D. M. Orlov, Ph.D. Thesis, University of Notre Dame (2006).
  25. 25 T. Unfer and J. P. Boeuf, J. Phys. D 42, 194017 (2009).
  26. 26 A. V. Likhanskii, M. N. Shneider, S. O. Macheret, and R. B. Miles, J. Appl. Phys. 103, 053305 (2008).
  27. 27 H. Nishida and T. Abe, 41st Plasma Dynamics and Lasers Conf., 2010.
  28. 28 B. Jayaraman, S. Thakur, and W. Shyy, J. Heat Transfer 129, 517 (2007).
  29. 29 G. I. Font, S. Jung, C. L. Enloe, and T. E. McLaughlin, 44th AIAA Aerospace Sciences Meeting, 2006.
  30. 30 I. Maden, R. Maduta, J. Kriegseis, S. Jakirlic, C. Schwarz, S. Grundmann, and C. Tropea, Int. J. Heat Fluid Flow 41, 80 (2013).
  31. 31 S. Fu, P. H. Biwole, and C. Mathis, Build. Environ. 87, 34 (2015).
  32. 32 Web [www.python.org].