JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011302 (2016) doi:10.7567/JJAPCP.4.011302

Age-related deterioration of contractile activity of actomyosin complex in rat gastrointestinal smooth muscle

Kateryna S. Zelenska, Nataliya E. Nurishchenko, Tetyana V. Beregova, Olga V. Shelyuk, Yuliya V. Tseysler

  1. Educational and Scientific Centre, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
  • Received October 08, 2015
  • PDF (681 KB) |

Abstract

It was found, that in rat senile age group, a decrease in the ATPase activity of actomyosin leads to deterioration of motility of stomach and colon with aging. White outbred rats aged 3 and 22–24 months were used. An amount of cleavage inorganic phosphate from ATP by myosin active centers was quantified to define the ATPase activity of actomyosin. It was established that Mg2+, Ca2+, K+-ATP-hydrolase activity of actomyosin in smooth muscle of rat stomach decreases as well as in colon. The observed deterioration of contractile activity of actomyosin complex can be explained by revealed oxidative modification of contractile proteins.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 E. M. De La Cruz and E. M. Ostap, Methods Enzymol. 455, 157 (2009).
  2. 2 K. Sreekumaran Nair, Am. J. Clin. Nutr. 81, 953 (2005).
  3. 3 E. Prochniewicz, L. V. Thompson, and D. D. Thomas, Exp. Gerontol. 42, 931 (2007).
  4. 4 L. V. Thompson, Exp. Gerontol. 44, 106 (2009).
  5. 5 M. B. Effron, G. M. Bhatnagar, H. A. Spurgeon, G. Ruaño-Arroyo, and E. Lakatta, Circ. Res. 60, 238 (1987).
  6. 6 K. N. Bitar, Am. J. Physiol. Gastrointest. Liver Physiol. 284, G1 (2003).
  7. 7 R. M. Touyz and E. L. Schiffrin, Pharmacol. Rev. 52, 639 (2000).
  8. 8 M. T. Pardue and J. G. Sivak, Optom. Vis. Sci. 77, 204 (2000).
  9. 9 G. J. Smits and R. A. Lefebvre, Eur. J. Pharmacol. 303, 79 (1996).
  10. 10 E. R. Stadtman, Ann. N.Y. Acad. Sci. 928, 22 (2001).
  11. 11 B. S. Avner, A. C. Hinken, C. Yuan, and R. J. Solaro, Am. J. Physiol. Heart Circ. Physiol. 299, H723 (2010).
  12. 12 E. E. Dubinina and A. V. Pustygina, Ukr. Biokhim. Zh. 80, 5 (2007).
  13. 13 E. E. Dubinina, L. V. Schedrina, N. G. Neznanov, N. M. Zalutskaya, and D. V. Zakharchenko, Biochem. (Mosc.), Suppl., Ser. B Biomed. Chem. 8, 181 (2014).
  14. 14 A. Sobieszek and R. D. Bremel, Eur. J. Biochem. 55, 49 (1975).
  15. 15 C. H. Fiske and Y. Subbarow, J. Biol. Chem. 66, 375 (1925).
  16. 16 R. L. Levine, D. Garland, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. W. Ahn, S. Shaltiel, and E. Stadtman, Methods Enzymol. 186, 464 (1990).