JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011403 (2016) doi:10.7567/JJAPCP.4.011403

Microbial fuel cell with garbage treatment

Yusuke Chiba, Satoshi Matsuda

  1. Department of Applied Chemistry and Biochemical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan
  • Received October 09, 2015
  • PDF (878 KB) |


This study intends to develop a new application of MFC (Microbial Fuel Cells) to microbial garbage treatment; i.e., to perform decomposition of organic compounds in garbage and generation of electricity simultaneously. At first, the condition of electricity generation using a model substrate was established, and then the optimum condition for the two purposes stated above was clarified. For instance, active carbon is indispensable as a catalyst for the positive electrode. Since the amount of electricity generated by this system is very small, another suitable use of this system was pursued. One possible application was suggested: use as a diagnostic sensor for garbage treatment systems. Electricity generation occurs only when the system becomes anaerobic, which is bad for decomposition. No electricity was detected when decomposition of garbage was achieved in good, aerobic conditions.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 S. Matsuda, R. Iwata, and Y. Uhara, J. Adv. Res. Phys. 3, 011208 (2012).
  2. 2 S. Yamamoto, K. Suzuki, Y. Araki, H. Mochihara, T. Hosokawa, H. Kubota, Y. Chiba, O. Rubaba, Y. Tashiro, and H. Futamata, Microbes Environ. 29, 145 (2014).
  3. 3 M. A. Moqsud, K. Omine, and N. Yasufuku, Waste Manag. Res. 32, 124 (2014).
  4. 4 Y. Feng, X. Wang, B. E. Logan, and H. Lee, Appl. Microbiol. Biotechnol. 78, 873 (2008).
  5. 5 Z. He, J. Liu, Y. Qiao, C. M. Li, and T. T. Y. Tan, Nano Lett. 12, 4738 (2012).
  6. 6 J. E. Mink and M. M. Hussain, ACS Nano 7, 6921 (2013).
  7. 7 L. De Schamphelairet et al., Environ. Sci. Technol. 42, 3052 (2008).
  8. 8 Y. Zhang, B. Min, L. Huang, and I. Angelidaki, Appl. Environ. Microbiol. 75, 3389 (2009).
  9. 9 F. Rezaei, D. Xing, R. Wagner, J. M. Regan, T. L. Richard, and B. E. Logan, Appl. Environ. Microbiol. 75, 3673 (2009).
  10. 10 I. A. Ieropoulos, P. Ledezma, A. Stinchcombe, G. Papaharalabos, C. Melhuish, and J. Greenman, Phys. Chem. Chem. Phys. 15, 15312 (2013).
  11. 11 K. Rabaey and W. Verstraete, Trends Biotechnol. 23, 291 (2005).
  12. 12 M. Salvador Pedro, S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii, and Y. Igarashi, J. Biosci. Bioeng. 91, 159 (2001).
  13. 13 S. Haruta, M. Kondo, K. Nakamura, H. Aiba, S. Ueno, M. Ishii, and Y. Igarashi, Appl. Microbiol. Biotechnol. 60, 224 (2002).