JJAP Conference Proceedings

JJAP Conf. Proc. 4, 011502 (2016) doi:10.7567/JJAPCP.4.011502

Evaluation of kinetic-inductance nonlinearity in a single-crystal NbTiN-based coplanar waveguide

Masanori Takeda1, Takafumi Kojima2, Atsushi Saito3, Kazumasa Makise4, Hisashi Shimakage5

  1. 1Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8011, Japan
  2. 2Advanced Technology Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
  3. 3Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
  4. 4Advanced ICT Research Center, NICT, Kobe 651-2492, Japan
  5. 5College of Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
  • Received September 25, 2015
  • PDF (880 KB) |

Abstract

We have developed a kinetic inductance travelling-wave amplifier toward the THz-band operation. In this paper, we discuss the nonlinear kinetic inductance of single-crystal niobium titanium nitride (NbTiN) thin film in response to the application of current to the film. In our calculation, it is found that single-crystal NbTiN films have a large current variation in the kinetic inductance compared with that of polycrystalline NbTiN films. To evaluate the nonlinearity, we fabricated a superconducting coplanar waveguide with a 0.2-m line length and measured the transmittance. We observed a variation of the electrical length of the line caused by the modulation of the kinetic inductance as a function of the value of the current applied to the strip.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 B. H. Eom, P. K. Day, H. G. LeDuc, and J. Zmuidzinas, Nature 8, 623 (2012).
  2. 2 C. Bockstiegel, J. Gao, M. R. Vissers, M. Sandberg, S. Chaudhuri, A. Sanders, L. R. Vale, K. D. Irwin, and D. P. Pappas, J. Low Temp. Phys. 176, 476 (2014).
  3. 3 J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
  4. 4 A. Lupaşcu, S. Saito, T. Picot, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, Nature 3, 119 (2007).
  5. 5 C. Bockstiegel, J. Gao, M. R. Vissers, M. Sandberg, S. Chaudhuri, A. Sanders, L. R. Vale, K. D. Irwin, and D. P. Pappas, J. Low Temp. Phys. 176, 476 (2014).
  6. 6 K. Makise, H. Terai, M. Takeda, Y. Uzawa, and Z. Wang, IEEE Trans. Appl. Supercond. 21, 139 (2011).
  7. 7 D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).
  8. 8 K. Watanabe, K. Yoshida, T. Aoki, and S. Kohjiro, Jpn. J. Appl. Phys. 33, 5708 (1994).