JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011103 (2017) doi:10.7567/JJAPCP.5.011103

Effects of nitrogen doping on optical and electrical properties of nanocrystalline FeSi films prepared by sputtering

Tomohiro Nogami1, Hirokazu Kishimoto1, Ryuji Baba1, Nathaporn Promros2, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
  • Received September 14, 2016
  • PDF (1.3 MB) |

Abstract

Nitrogen-doped nanocrystalline-FeSi2 (NC-FeSi2) thin films were deposited on SiO2 substrates at room temperature by radio frequency magnetron sputtering, and the effects of nitrogen-doping were experimentally studied. X-ray diffraction measurements revealed that the lattice constant of nano-sized grains increases by nitrogen doping and finally the film becomes amorphous. Optical absorption spectral and electrical measurements indicated that the optical bandgap is evidently enlarged and the electrical conductivity is significantly decreased by nitrogen doping, respectively. It was experimentally demonstrated that nitrogen doping drastically modulate NC-FeSi2 optically and electrically.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 M. Suzuno, S. Murase, T. Koizumi, and T. Suemasu, Appl. Phys. Express 1, 021403 (2008).
  2. 2 M. Shaban, K. Nakashima, W. Yokoyama, and T. Yoshitake, Jpn. J. Appl. Phys. 46, L667 (2007).
  3. 3 A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, and N. G. Galkin, Appl. Phys. Lett. 109, 171101 (2016).
  4. 4 A. Shevlyagin, D. Goroshko, E. Chusovitin, K. Galkin, N. Galkin, and A. Gutakovskii, Sci. Rep. 5, 14795 (2015).
  5. 5 N. Galkin, E. Chusovitin, D. Goroshko, A. Shevlyagin, A. Saranin, T. Shamirzaev, K. Zhuravlev, and A. Latyshev, Appl. Phys. Lett. 101, 163501 (2012).
  6. 6 S. Nakamura, T. Aoki, T. Kittaka, R. Hakamata, H. Tabuchi, S. Kunitsugu, and K. Takarabe, Thin Solid Films 515, 8205 (2007).
  7. 7 M. Powalla and K. Herz, Appl. Surf. Sci. 65–66, 482 (1993).
  8. 8 S. Izumi, M. Shaban, N. Promros, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 102, 032107 (2013).
  9. 9 H. Udono, I. Kikuma, T. Okuno, Y. Masumoto, and H. Tajima, Appl. Phys. Lett. 85, 1937 (2004).
  10. 10 M. Suzuno, T. Koizumi, and T. Suemasu, Appl. Phys. Lett. 94, 213509 (2009).
  11. 11 M. Shaban, S. Izumi, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 95, 162102 (2009).
  12. 12 D. B. Migas and L. Miglio, Phys. Rev. B 62, 11063 (2000).
  13. 13 Y. Maeda, Y. Terai, and M. Itakura, J. Appl. Phys. 44, 2502 (2005).
  14. 14 M. Shaban, K. Nomoto, S. Izumi, and T. Yoshitake, Appl. Phys. Lett. 94, 222113 (2009).
  15. 15 N. Promros, K. Yamashita, C. Li, K. Kawai, M. Shaban, T. Okajima, and T. Yoshitake, Jpn. J. Appl. Phys. 51, 021301 (2012).
  16. 16 M. Milosavljević, G. Shao, M. A. Lourenço, R. M. Gwilliam, K. P. Homewood, S. P. Edwards, R. Valizadeh, and J. S. Colligon, J. Appl. Phys. 98, 123506 (2005).
  17. 17 T. Yoshitake, M. Yatabe, M. Itakura, N. Kuwano, Y. Tomokiyo, and K. Nagayama, Appl. Phys. Lett. 83, 3057 (2003).
  18. 18 K. Takarabe, H. Doi, Y. Mori, K. Fukui, Y. Shim, N. Yamamoto, T. Yoshitake, and K. Nagayama, Appl. Phys. Lett. 88, 061911 (2006).
  19. 19 T. Ootsuka, Y. Fudamoto, M. Osamura, T. Suemasu, Y. Makita, Y. Fukuzawa, and Y. Nakayama, Appl. Phys. Lett. 91, 142114 (2007).
  20. 20 N. Promros, K. Yamashita, S. Izumi, R. Iwasaki, M. Shaban, and T. Yoshitake, Jpn. J. Appl. Phys. 51, 09MF02 (2012).
  21. 21 M. Shaban, H. Kondo, K. Nakashima, and T. Yoshitake, Jpn. J. Appl. Phys. 47, 5420 (2008).
  22. 22 I. S. Beloborodov, P. Zapol, D. M. Gruen, and L. A. Curtiss, Phys. Rev. B 74, 235434 (2006).