JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011108 (2017) doi:10.7567/JJAPCP.5.011108

Solid phase epitaxy formation of silicon-GaSb based heterostructures

Dmitry L. Goroshko1,2, Evgeniy A. Chusovitin1, Igor M. Chernev1, Alexander V. Shevlyagin1, Konstantin N. Galkin1, Nikolay G. Galkin1,2

  1. 1Institute of Automation and Control Processes FEB RAS, 5 Radio St., 690041 Vladivostok, Russia
  2. 2Far Eastern Federal University, 8 Sukhanova St., 690950 Vladivostok, Russia
  • Received September 15, 2016
  • PDF (1.2 MB) |

Abstract

A double-layer heterostructure with embedded into single-crystalline silicon matrix nanocrystallites of gallium antimonide was grown. GaSb was formed by solid phase epitaxy method using Ga-Sb stoichiometric mixture of 2-nm-thick and a stepped annealing from 200 to 500 °C. The obtained nanocrystallites have a concentration of 7.1 × 1010 cm−2, a height of 4.6 nm and lateral dimensions of 16–20 nm. The GaSb nanocrystallites were covered with silicon layer using molecular beam epitaxy in two stage: 40-nm-thick at 300 °C followed by 60-nm-thick at 500 °C.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 Y. H. Kim, J. Y. Lee, Y. G. Noh, M. D. Kim, S. M. Cho, Y. J. Kwon, and J. E. Oh, Appl. Phys. Lett. 88, 241907 (2006).
  2. 2 T. Nguyen, W. Varhue, M. Cross, R. Pino, E. Adams, M. Lavoie, and J. Lee, J. Appl. Phys. 101, 073707 (2007).
  3. 3 K. Akahane, N. Yamamoto, S. I. Gozu, A. Ueta, and N. Ohtani, J. Cryst. Growth 283, 297 (2005).
  4. 4 M. Jo, N. Yasuhara, Y. Sugawara, K. Kawamoto, and S. Fukatsu, J. Cryst. Growth 278, 142 (2005).
  5. 5 M. Jo, K. Ishida, N. Yasuhara, Y. Sugawara, K. Kawamoto, and S. Fukatsu, Appl. Phys. Lett. 86, 103509 (2005).
  6. 6 V. G. Lifshits, A. A. Saranin, and A. V. Zotov, Surface Phases on Silicon: Preparation, Structures, and Properties (Wiley, 1994).
  7. 7 K. F. Longenbach and W. I. Wang, Appl. Phys. Lett. 59, 2427 (1991).
  8. 8 S. A. Barnett, H. F. Winters, and J. E. Greene, Surf. Sci. 165, 303 (1986).
  9. 9 M. S. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996) Vol. 1.
  10. 10 A. M. Rocher, Solid State Phenom. 19–20, 563 (1991).
  11. 11 V. K. Paliwal and S. M. Shivaprasad, Surf. Sci. 561, L207 (2004).
  12. 12 K. L. Carleton, B. Bourguignon, and S. R. Leone, Surf. Sci. 199, 447 (1988).
  13. 13 R. Ludeke, IBM J. Res. Dev. 22, 304 (1978).
  14. 14 M. K. Farr, J. G. Traylor, and S. K. Sinha, Phys. Rev. B 11, 1587 (1975).
  15. 15 C. Heyn, Phys. Rev. B 83, 165302 (2011).
  16. 16 N. G. Galkin, E. A. Chusovitin, T. S. Shamirsaev, A. K. Gutakovski, and A. V. Latyshev, Thin Solid Films 519, 8480 (2011).
  17. 17 S. Hara, R. Machida, K. Yoshiki, K. Irokawa, H. Miki, A. Kawazu, and H. I. Fujishiro, Phys. Status Solidi C 10, 865 (2013).