JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011201 (2017) doi:10.7567/JJAPCP.5.011201

Realization of crystalline BaSi2 thin films by vacuum evaporation on (111)-oriented Si layers fabricated by aluminum induced crystallization

Jefferson A. Wibowo1, Isao Takahashi1, Kosuke O. Hara2, Noritaka Usami1

  1. 1Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
  2. 2Center for Crystal Science and Technology, University of Yamanashi, Kofu 400-8511, Japan
  • Received August 26, 2016
  • PDF (1.1 MB) |


We have realized single phase crystalline BaSi2 thin films on quartz substrate by vacuum evaporation for solar cell applications. This structure is achieved by introducing (111)-oriented poly-Si fabricated by aluminum induced crystallization as a supply layer prior to BaSi2 deposition. Raman measurements showed five characteristic peaks corresponding to [Si4]4− anions vibrations in BaSi2 for all films deposited at 400 °C and above. X-ray diffraction analysis showed that randomly-oriented orthorhombic phase of BaSi2 is achieved with no trace of secondary phases. Also, the crystal quality is enhanced at higher substrate temperatures.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 K. Toh, T. Saito, and T. Suemasu, Jpn. J. Appl. Phys. 50, 068001 (2011).
  2. 2 K. Morita, Y. Inomata, and T. Suemasu, Thin Solid Films 508, 363 (2006).
  3. 3 Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, L478 (2004).
  4. 4 K. Toh, K. O. Hara, N. Usami, N. Saito, N. Yoshizawa, K. Toko, and T. Suemasu, J. Cryst. Growth 345, 16 (2012).
  5. 5 W. Du, M. Baba, K. Toko, K. O. Hara, K. Watanabe, T. Sekiguchi, N. Usami, and T. Suemasu, J. Appl. Phys. 115, 223701 (2014).
  6. 6 K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, Appl. Phys. Express 6, 112302 (2013).
  7. 7 Y. Nakagawa, K. O. Hara, T. Suemasu, and N. Usami, Jpn. J. Appl. Phys. 54, 08KC03 (2015).
  8. 8 K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, Jpn. J. Appl. Phys. 54, 07JE02 (2015).
  9. 9 K. O. Hara, J. Yamanaka, K. Arimoto, K. Nakagawa, T. Suemasu, and N. Usami, Thin Solid Films 595, 68 (2015).
  10. 10 O. Nast, S. Brehme, S. Pritchard, A. G. Aberle, and S. R. Wenham, Sol. Energy Mater. Sol. Cells 65, 385 (2001).
  11. 11 T. Ito, H. Fukushima, and M. Yamaguchi, Sol. Energy Mater. Sol. Cells 83, 91 (2004).
  12. 12 Y. Sugimoto, N. Takata, T. Hirota, K. Takeda, F. Yoshida, H. Nakashima, and H. Nakashima, Jpn. J. Appl. Phys. 44, 4770 (2005).
  13. 13 A. Sarikov, J. Schneider, J. Berghold, M. Muske, I. Seiber, S. Gall, and W. Fuhs, J. Appl. Phys. 107, 114318 (2010).
  14. 14 L. Haji, P. Joubert, J. Stoemenos, and N. A. Economou, J. Appl. Phys. 75, 3944 (1994).
  15. 15 M. Somer and Z. Anorg, Allg. Chem. 626, 2487 (2000).
  16. 16 M. Rüdiger, M. Rauer, C. Schimga, M. Hermle, and S. W. Glunz, Energy Procedia 8, 527 (2011).
  17. 17 M. Takeishi, Y. Matsumoto, R. Sasaki, T. Saito, and T. Suemasu, Phys. Procedia 11, 27 (2011).