JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011202 (2017) doi:10.7567/JJAPCP.5.011202

Preferred orientation of BaSi thin films fabricated by thermal evaporation

Kosuke O. Hara1, Cham Thi Trinh2, Yoshihiko Nakagawa2, Yasuyoshi Kurokawa2, Keisuke Arimoto1, Junji Yamanaka1, Kiyokazu Nakagawa1, Noritaka Usami2

  1. 1Center for Crystal Science and Technology, University of Yamanashi, Yamanashi 400-8511, Japan
  2. 2Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
  • Received August 30, 2016
  • PDF (442 KB) |

Abstract

Thermal evaporation is a simple and high-speed method to grow a BaSi2 thin film, which is an emerging candidate for an absorber-layer material of thin-film solar cells. In this study, we have investigated the preferred orientation of BaSi2 films grown at substrate temperatures of 600–700 °C by thermal evaporation using X-ray diffraction. 2θ–ω scans show that peaks derived from (100) orientation grow steadily with increasing substrate temperature. By X-ray pole figure analysis, the (100)-oriented crystals are proven to be epitaxially grown on Si(100) with two variants. The reason of epitaxial growth is discussed from the epitaxial temperature.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 T. Nakamura, T. Suemasu, K. Takakura, F. Hasegawa, A. Wakahara, and M. Imai, Appl. Phys. Lett. 81, 1032 (2002).
  2. 2 S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, J. Alloys Compd. 428, 22 (2007).
  3. 3 K. Toh, T. Saito, and T. Suemasu, Jpn. J. Appl. Phys. 50, 068001 (2011).
  4. 4 K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, Jpn. J. Appl. Phys. 54, 07JE02 (2015).
  5. 5 K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, Appl. Phys. Express 6, 112302 (2013).
  6. 6 M. Baba, K. Toh, K. Toko, N. Saito, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, J. Cryst. Growth 348, 75 (2012).
  7. 7 M. Kobayashi, Y. Matsumoto, Y. Ichikawa, D. Tsukada, and T. Suemasu, Appl. Phys. Express 1, 051403 (2008).
  8. 8 M. A. Khan, K. Hara, W. Du, M. Baba, K. Nakamura, M. Suzuno, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Lett. 102, 112107 (2013).
  9. 9 K. O. Hara, W. Du, K. Arimoto, J. Yamanaka, K. Nakagawa, K. Toko, T. Suemasu, and N. Usami, Thin Solid Films 603, 218 (2016).
  10. 10 D. Tsukahara, S. Yachi, H. Takeuchi, R. Takabe, W. Du, M. Baba, Y. Li, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Lett. 108, 152101 (2016).
  11. 11 Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, L478 (2004).
  12. 12 K. Toh, K. O. Hara, N. Usami, N. Saito, N. Yoshizawa, K. Toko, and T. Suemasu, J. Cryst. Growth 345, 16 (2012).
  13. 13 Y. Nakagawa, K. O. Hara, T. Suemasu, and N. Usami, Jpn. J. Appl. Phys. 54, 08KC03 (2015).
  14. 14 K. O. Hara, K. Nakagawa, T. Suemasu, and N. Usami, Procedia Eng. 141, 27 (2016).
  15. 15 Y. Nakagawa, K. O. Hara, T. Suemasu, and N. Usami, Procedia Eng. 141, 23 (2016).
  16. 16 K. O. Hara, C. T. Trinh, K. Arimoto, J. Yamanaka, K. Nakagawa, Y. Kurokawa, T. Suemasu, and N. Usami, J. Appl. Phys. 120, 045103 (2016).
  17. 17 C. T. Trinh, Y. Nakagawa, K. O. Hara, R. Takabe, T. Suemasu, and N. Usami, Mater. Res. Express 3, 076204 (2016).
  18. 18 K. O. Hara, J. Yamanaka, K. Arimoto, K. Nakagawa, T. Suemasu, and N. Usami, Thin Solid Films 595, 68 (2015).
  19. 19 K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, Phys. Status Solidi C 10, 1677 (2013).
  20. 20 E. Krikorian and R. J. Sneed, J. Appl. Pnys. 37, 3665 (1966).
  21. 21 T. Itoh, S. Hasegawa, and N. Kaminaka, J. Appl. Phys. 40, 2597 (1969).
  22. 22 E. Grünbaum, Vacuum 24, 153 (1974).
  23. 23 Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, 4155 (2004).