JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011301 (2017) doi:10.7567/JJAPCP.5.011301

Oxidation resistance of impurity doped Mg2Si grown from the melt

Shu Konno, Tsubasa Otubo, Kohei Nakano, Haruhiko Udono

  1. Graduate school of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
  • Received September 14, 2016
  • PDF (1.1 MB) |


We have investigated oxidation resistance of melt grown Mg2Si crystals doped with Sb or Bi impurity by thermal annealing above 600 °C, large difference of oxidation speed was observed in the Sb-doped, Bi-doped and non-doped Mg2Si crystals. The sample weight of Bi-doped and non-doped Mg2Si increased about 128 and 104%, respectively, while that of Sb-doped one unchanged after thermal annealing at 650 °C for 6 h. TG/DTA analysis also revealed the changing of oxidation speed and reaction temperature in the Sb-doped, Bi-doped, and non-doped Mg2Si crystals. These results indicate that Sb-dopant improves the oxidation resistance whereas Bi-dopant deteriorates the oxidation resistance of Mg2Si.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 E. N. Nikitin, V. G. Bazanov, and V. I. Tarasov, Sov. Phys. Solid State 3, 2648 (1961).
  2. 2 D. M. Rowe, Thermoelectrics Handbook, Micro to Nano (CRC Press, 2006) Chap. 18, p. 31.
  3. 3 J. Tani and H. Kido, Intermetallics 15, 1202 (2007).
  4. 4 J. Tani and H. Kido, J. Alloys Compd. 488, 346 (2009).
  5. 5 J. Tani and H. Kido, Intermetallics 16, 418 (2008).
  6. 6 M. W. Heller and G. C. Danielson, J. Phys. Chem. Solids 23, 601 (1962).
  7. 7 M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, and Y. Takanashi, J. Cryst. Growth 304, 196 (2007).
  8. 8 K. Kambe and H. Udono, J. Electron. Mater. 43, 2212 (2014).
  9. 9 H. Udono, H. Tajima, M. Uchikoshi, and M. Itakura, Jpn. J. Appl. Phys. 54, 07JB06 (2015).
  10. 10 T. Sakamoto, T. Iida, N. Fukushima, Y. Honda, M. Tada, Y. Taguchi, Y. Mito, H. Taguchi, and Y. Takanashi, Thin Solid Films 519, 8528 (2011).
  11. 11 J. M. Muñoz-Palos, M. C. Cristina, and P. Adeva, Mater. Trans., JIM 37, 1602 (1996).
  12. 12 Y. Mito, A. Ogino, S. Konno, and H. Udono, J. Electron. Mater. 46, 3103 (2017).
  13. 13 T. Otubo, H. Otake, H. Udono, T. Shiga, and J. Shiomi, MRS Spring Meeting, 2015, CC.9.
  14. 14 E. Godlewska, K. Mars, R. Mania, and S. Zimowski, Intermetallics 19, 1983 (2011).
  15. 15 J. Liang, X. Li, Z. Hou, C. Guo, Y. Zhu, and Y. Qian, Chem. Commun. 51, 7230 (2015).
  16. 16 G. Skomedal, N. Kristiansen, M. Engvoll, and H. Middleton, J. Electron. Mater. 43, 1946 (2014).