JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011401 (2017) doi:10.7567/JJAPCP.5.011401

Phase composition evolution of iron silicide nanocrystals in the course of embedding into monocrystalline silicon

Evgeniy A. Chusovitin1, Dmitry L. Goroshko1,2, Sergey A. Dotsenko1,2, Alexander V. Shevlyagin1, Nikolay G. Galkin1,2, Anton K. Gutakovskii3

  1. 1Institute of Automation and Control Processes FEB RAS, 5 Radio St., 690041 Vladivostok, Russia
  2. 2Far Eastern Federal University, School of Natural Sciences 8 Sukhanova St., 690950 Vladivostok, Russia
  3. 3Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia.
  • Received September 14, 2016
  • PDF (1.4 MB) |

Abstract

Phase composition of iron silicide nanocrystals (NCs) in the course of formation by solid phase epitaxy (SPE) method, and embedding into silicon was studied. It was found that SPE of 0.4-nm-thick Fe film at 630 °C resulted in formation of small (less than 29.5 nm) and big (more than 42.6 nm) NCs. The former contained only β-FeSi2 phase and the latter consisted of β-FeSi2 and ε-FeSi phases. Annealing of these NCs at 750 °C for 90 min led to transformation of β-FeSi2 and ε-FeSi into α-FeSi2 NCs. However, when the as-grown NCs have been covered with silicon layer with thickness of 25–380 nm at 750 °C, they turned into β-FeSi2 NC. Epitaxial relationship and crystal lattice deformation obtained for β-FeSi2 NCs covered by Si layer is favorable for indirect to direct band gap transition.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 W. I. Wang, Appl. Phys. Lett. 44, 1149 (1984).
  2. 2 S. Chu, T. Hirohada, K. Nakajima, H. Kan, and T. Hiruma, Jpn. J. Appl. Phys. 41, L1200 (2002).
  3. 3 Y. Maeda, T. Akita, K. Umezawa, K. Miyake, and K. Sagawa, Proc. SPIE 3419, 354 (1998).
  4. 4 T. Suemasu, K. Takakura, Ch. Li, Y. Ozawa, Y. Kumagai, and F. Hasegawa, Thin Solid Films 461, 209 (2004).
  5. 5 V. E. Borisenko, Semiconducting Silicides (Springer, Berlin, 2000) p. 86.
  6. 6 A. D. Yoffe, Adv. Phys. 50, 1 (2001).
  7. 7 V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J.-C. Harmand, and P. Werner, Nano Lett. 11, 1247 (2011).
  8. 8 A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, K. N. Galkin, N. G. Galkin, and A. K. Gutakovskii, Sci. Rep. 5, 14795 (2015).
  9. 9 A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, and N. G. Galkin, Appl. Phys. Lett. 109, 171101 (2016).
  10. 10 S. Izumi, M. Shaban, N. Promros, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 102, 032107 (2013).
  11. 11 A. S. Gouralnik, S. A. Dotsenko, N. G. Galkin, V. A. Ivanov, V. S. Plotnikov, E. V. Pustovalov, A. I. Cherednichenko, A. K. Gutakovski, and M. A. Neklyudova, Appl. Phys. A 112, 507 (2013).
  12. 12 A. S. Gouralnik, N. G. Galkin, V. A. Ivanov, A. I. Cherednichenko, V. S. Plotnikov, and E. V. Pustovalov, Thin Solid Films 519, 8520 (2011).
  13. 13 W. Raunau, H. Niehus, and G. Comsa, Surf. Sci. Lett. 284, L375 (1993).
  14. 14 H. P. Zeindl, V. Fuenzalida, J. Messarosch, I. Eisele, H. Oppolzer, and V. Huber, J. Cryst. Growth 81, 231 (1987).
  15. 15 E. V. Sokolova, E. A. Chusovitin, A. O. Barabanova, S. A. Balagan, N. G. Galkin, and I. M. Yermak, Carbohydr. Polym. 93, 458 (2013).
  16. 16 CrystalMaker Software Ltd, Oxford, England [www.crystalmaker.com].
  17. 17 I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh, Y. S. Dedkov, and S. L. Molodtsov, J. Appl. Phys. 104, 104914 (2008).
  18. 18 L. Vočadlo, G. D. Price, and I. G. Wood, Acta Crystallogr., Sect. B 55, 484 (1999).
  19. 19 T. Sakata, Y. Sakai, H. Yoshino, H. Fujii, and I. Nishida, J. Less-Common Met. 61, 301 (1978).
  20. 20 M. Milosavljević, G. Shao, M. A. Lourenço, R. M. Gwilliam, K. P. Homewood, S. P. Edwards, R. Valizadeh, and J. S. Colligon, J. Appl. Phys. 98, 123506 (2005).
  21. 21 V. E. Borisenko, Semiconducting Silicides (Springer, Berlin, 2000) p. 41.
  22. 22 D. Panknin, E. Wieser, K. Wollschläger, R. Grötzschel, W. Skorupa, and G. Querner, Vacuum 44, 171 (1993).
  23. 23 V. E. Borisenko, Semiconducting Silicides (Springer, Berlin, 2000) p. 66.
  24. 24 D. B. Migas and L. Miglio, Phys. Rev. B 62, 11063 (2000).
  25. 25 N. G. Galkin, E. A. Chusovitin, T. S. Shamirsaev, A. K. Gutakovski, and A. V. Latyshev, Thin Solid Films 519, 8480 (2011).