JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011403 (2017) doi:10.7567/JJAPCP.5.011403

Epitaxial relations, crystalline structure and defects in the double Si(111)/hR6 CaSi2/Si(111) heterostructures

N. G. Galkin1, S. A. Dotsenko1, K. N. Galkin1, L. Dózsa2, I. Cora2, B. Pécz2

  1. 1Institute of Automation and Control Processes, Radio Str. 5, 690041 Vladivostok, Russia
  2. 2Institute of Technical Physics and Materials Research, Centre for Energy Research, Hungarian Academy of Sciences, 1525 Budapest Pf, 49, Hungary
  • Received August 26, 2016
  • PDF (1.6 MB) |


The morphology and crystalline structure of Si(111)/CaSi2/Si(111) double heterostructures (DHS) formed by the Ca reactive deposition epitaxy on the Si(111)7 × 7 surface and Si overgrowth at 500 °C have been studied by atomic force microscopy and transmission electron microscopy. It was established that stressed CaSi2 layers with stacking faults in (001)CaSi2 plane and {111}-twinned epitaxial or polycrystalline Si layers were grown. Epitaxial Si layers while had orientation parallel to the Si(111) substrate surface. CaSi2[100]||Si[$1\bar{1}0$] and CaSi2(001)||Si(111) epitaxial relations were conserved for all grown DHS and they did not depend from the silicon growth mode: molecular beam epitaxy (MBE) or solid phase epitaxy (SPE). The CaSi2 layer in (001)CaSi2 plane has a hR6 modification and parameters: a = 0.393 ± 0.002 nm; c = 3.09 ± 0.18 nm at SPE Si growth mode. But some another parameters: a = 0.382 ± 0.002 nm; c = 3.09 ± 0.18 nm were observed at MBE Si growth mode. The compression in c parameter on near 1.07–1.14% as compared with c-value (3.06 nm) for tabular CaSi2 data is established fact for both HDS. The observed differences in a parameter +1.85% (at SPE mode) and −1.08% (at MBE mode) is not clear now, and demands additional experiments. Some assumptions about mechanisms of occurrence and distribution of compressions and stretching in the CaSi2 lattice were made.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


  1. 1 D. B. Migas, L. Miglio, V. L. Shaposhnikov, and V. E. Borisenko, Phys. Rev. B 67, 205203 (2003).
  2. 2 S. Lebègue, B. Arnaud, and M. Alouani, Phys. Rev. B 72, 085103 (2005).
  3. 3 O. Bisi, L. Braikovich, C. Carbone, I. Lindau, A. Iandelli, G. L. Olcese, and A. Palenzona, Phys. Rev. B 40, 10194 (1989).
  4. 4 P. Manfrinetti, M. L. Fornasini, and A. Palenzona, Intermetallics 8, 223 (2000).
  5. 5 J. F. Morar and M. Wittmer, Phys. Rev. B 37, 2618 (1988).
  6. 6 G. Vogg, M. S. Brandt, M. Shutzmann, and M. Albrecht, J. Cryst. Growth 203, 570 (1999).
  7. 7 S. A. Dotsenko, K. N. Galkin, D. A. Bezbabnyy, D. L. Goroshko, and N. G. Galkin, Phys. Procedia 23, 41 (2012).
  8. 8 A. Barna, B. Pecz, and M. Menyhard, Ultramicroscopy 70, 161 (1998).
  9. 9 CrystalMaker Software Ltd and http://www.crystalmaker.com, (2016).
  10. 10 E. V. Sokolova, E. A. Chusovitin, A. O. Barabanova, S. A. Balagan, N. G. Galkin, and I. M. Yermak, Carbohydr. Polym. 93, 458 (2013).
  11. 11 N. G. Galkin, D. A. Bezbabnyi, K. N. Galkin, S. A. Dotsenko, E. Zielony, R. Kudrawiec, and J. Misiewicz, Phys. Status Solidi C 10, 1819 (2013).
  12. 12 Web [http://www.icdd.com/products/technicalbulletins/Synchrotron_Neutron_Users_Guide.pdf].
  13. 13 S. Fahy and D. R. Hamann, Phys. Rev. B 41, 7587 (1990).
  14. 14 G. Vogg, M. S. Brandt, M. Shutzmann, and M. Albrecht, J. Cryst. Growth 203, 570 (1999).
  15. 15 N. G. Galkin, D. A. Bezbabnyi, S. A. Dotsenko, K. N. Galkin, I. M. Chernev, E. A. Chusovitin, P. Nemes-Incze, L. Dózsa, B. Pécz, T. S. Shamirzaev, and A. K. Gutakovski, Solid State Phenom. 213, 71 (2014).