JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011501 (2017) doi:10.7567/JJAPCP.5.011501

Temperature-dependent magnetoresistance effects in FeSi/FeSi/FeSi trilayered spin valve junctions

Kazuya Ishibashi1, Kazuki Kudo1, Kazutoshi Nakashima1, Yuki Asai1, Ken-ichiro Sakai2, Hiroyuki Deguchi3, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Control and Information Systems Engineering, National Institute of Technology, Kurume College, Kurume, Fukuoka 830-8555, Japan
  3. 3Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 804-8550, Japan
  • Received October 01, 2016
  • PDF (2.9 MB) |

Abstract

Fe3Si/FeSi2/Fe3Si trilayered junctions were fabricated by facing targets direct-current sputtering combined with a mask method, and the spin valve signals of the junctions were studied in the temperature range from 50 to 300 K. Whereas the magnetoresistance ratio of giant magnetoresistance and tunnel magnetoresistance junctions monotonically increases with decreasing temperature, that of our samples has the maximum value around 80 K and decreases with decreasing temperature at lower than 80 K, which might be due to an increase in the electrical conductivity mismatch between the metallic Fe3Si layers and semiconducting FeSi2 interlayer in the low temperature range.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
  2. 2 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
  3. 3 M. Julliere, Phys. Lett. A 54, 225 (1975).
  4. 4 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
  5. 5 D. Chiba, Y. Sato, T. Kita, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 93, 216602 (2004).
  6. 6 R. Moriya, K. Hamaya, A. Oiwa, and H. Munekata, Jpn. J. Appl. Phys. 43, L825 (2004).
  7. 7 M. Watanabe, J. Okabayashi, H. Toyao, T. Yamaguchi, and J. Yoshino, Appl. Phys. Lett. 92, 082506 (2008).
  8. 8 K. Inomata, K. Yusu, and Y. Saito, Phys. Rev. Lett. 74, 1863 (1995).
  9. 9 E. E. Fullerton, J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher, and S. D. Bader, J. Appl. Phys. 73, 6335 (1993).
  10. 10 E. E. Fullerton, J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher, and S. D. Bader, J. Magn. Magn. Mater. 117, L301 (1992).
  11. 11 J. E. Mattson, S. Kumar, E. E. Fullerton, S. R. Lee, C. H. Sowers, M. Grimsditch, and S. D. Bader, Phys. Rev. Lett. 71, 185 (1993).
  12. 12 Y. Endo, O. Kitakami, and Y. Shimada, Phys. Rev. B 59, 4279 (1999).
  13. 13 Y. Fujita, S. Yamada, G. Takemoto, S. Oki, Y. Maeda, M. Miyao, and K. Hamaya, Jpn. J. Appl. Phys. 52, 04CM02 (2013).
  14. 14 K. Hamaya, Y. Ando, T. Sadoh, and M. Miyao, Jpn. J. Appl. Phys. 50, 010101 (2011).
  15. 15 T. Yoshitake, T. Ogawa, D. Nakagauchi, D. Hara, M. Itakura, N. Kuwano, and Y. Tomokiyo, Appl. Phys. Lett. 89, 253110 (2006).
  16. 16 K. Takeda, T. Yoshitake, D. Nakagauchi, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, and K. Nagayama, Jpn. J. Appl. Phys. 46, 7846 (2007).
  17. 17 K. Takeda, T. Yoshitake, Y. Sakamoto, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, T. Kajiwara, and K. Nagayama, Appl. Phys. Express 1, 021302 (2008).
  18. 18 S. Hirakawa, T. Sonoda, K. Sakai, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 50, 08JD06 (2011).
  19. 19 K. Sakai, T. Sonoda, S. Hirakawa, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 51, 028004 (2012).
  20. 20 K. Sakai, Y. Noda, K. Takeda, M. Takeda, and T. Yoshitake, Phys. Status Solidi C 10, 1862 (2013).
  21. 21 K. Sakai, Y. Noda, D. Tsumagari, H. Deguchi, K. Takeda, and T. Yoshitake, Phys. Status Solidi A 211, 323 (2014).
  22. 22 K. Sakai, Y. Noda, T. Daio, D. Tsumagari, A. Tominaga, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 53, 02BC15 (2014).
  23. 23 K. Sakai, Y. Asai, M. Takeda, K. Ishibashi, Y. Noda, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011502 (2015).
  24. 24 K. Sakai, Y. Asai, Y. Noda, T. Daio, A. Tominaga, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011503 (2015).
  25. 25 Y. Asai, K. Sakai, K. Ishibashi, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011501 (2015).
  26. 26 Y. Asai, K. Sakai, K. Ishibashi, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011504 (2015).
  27. 27 T. Sadoh, T. Takeuchi, K. Ueda, A. Kenjo, and M. Miyao, Jpn. J. Appl. Phys. 45, 3598 (2006).
  28. 28 M. Shaban, H. Kondo, K. Nakashima, and T. Yoshitake, Jpn. J. Appl. Phys. 47, 5420 (2008).
  29. 29 Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).
  30. 30 T. Ishikawa, N. Itabashi, T. Taira, K. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 94, 092503 (2009).
  31. 31 A. Sakuma, Y. Toga, and H. Tsuchiura, J. Appl. Phys. 105, 07C910 (2009).
  32. 32 M. A. M. Gijs, S. K. J. Lenczowski, and J. B. Giesbers, Phys. Rev. Lett. 70, 3343 (1993).
  33. 33 H. Sato, Y. Aoki, Y. Kobayashi, H. Yamamoto, and T. Shinjo, J. Phys. Soc. Jpn. 62, 431 (1993).
  34. 34 G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
  35. 35 E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
  36. 36 A. Fert and H. Jaffrès, Phys. Rev. B 64, 184420 (2001).
  37. 37 T. Kimura, T. Sato, and Y. Otani, Phys. Rev. Lett. 100, 066602 (2008).