JJAP Conference Proceedings

JJAP Conf. Proc. 5, 011502 (2017) doi:10.7567/JJAPCP.5.011502

Film structures of Fe/B-doped carbon/FeSi spin valve junctions

Kazuki Kudo1, Kazutoshi Nakashima1, Satoshi Takeichi1, Rezwan Ahmed2, Seigi Mizuno2, Ken-ichiro Sakai3, Masahiko Nishijima4, Tsuyoshi Yoshitake1

  1. 1Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  2. 2Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
  3. 3Department of Control and Information Systems Engineering, National Institute of Technology, Kurume College, Kurume, Fukuoka 830-8555, Japan
  4. 4The Electron Microscopy Center, Technology Center for Research and Education Activities, Tohoku University, Sendai 980-8577, Japan
  • Received January 24, 2017
  • PDF (1.0 MB) |

Abstract

Fe/B-doped carbon/Fe3Si trilayered films were prepared on Si(111) substrates by physical vapor deposition with a mask method, and the film-structures and magnetic properties of the films were investigated. The Fe3Si and Fe layers were deposited by facing targets direct-current sputtering (FTDCS), and the B-doped carbon layers were deposited by coaxial arc plasma deposition (CAPD) with B-blended graphite targets. Here, since the B-doped carbon layers were deposited by CAPD in the same manner as the deposition of B-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films, the interlayers should be B-doped UNCD/a-C:H. The formation of a layered structure was confirmed by transmission electron microscopy (TEM). The diffusion of Fe and Si atoms into the interlayer occurs in the range of several nanometers. The shape of the magnetization curve has clear steps that evidently indicate the formation of antiparallel alignment of magnetizations owing to the difference in the coercive forces between the top Fe and bottom Fe3Si layers. It was experimentally demonstrated that B-doped UNCD/a-C:H is applicable to Fe–Si system spin valves as interlayer materials.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
  2. 2 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
  3. 3 M. Julliere, Phys. Lett. A 54, 225 (1975).
  4. 4 S. Maekawa and U. Gafvert, IEEE Trans. Magn. 18, 707 (1982).
  5. 5 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
  6. 6 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
  7. 7 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
  8. 8 S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nat. Mater. 3, 862 (2004).
  9. 9 I. Appelbaum, B. Huang, and D. J. Monsma, Nature 447, 295 (2007).
  10. 10 B. Huang, D. J. Monsma, and I. Appelbaum, Phys. Rev. Lett. 99, 177209 (2007).
  11. 11 B. T. Jonker, G. Kioseoglou, A. T. Hanbicki, and C. H. Li, Nat. Phys. 3, 542 (2007).
  12. 12 Y. Ando, K. Kasahara, K. Yamane, K. Hamaya, K. Sawano, T. Kimura, and M. Miyao, Appl. Phys. Express 3, 093001 (2010).
  13. 13 K. Kasahara, Y. Fujita, S. Yamada, K. Sawano, M. Miyao, and K. Hamaya, Appl. Phys. Express 7, 033002 (2014).
  14. 14 X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddry, S. D. Flexner, C. J. Palmstorm, and P. A. Crowell, Nat. Phys. 3, 197 (2007).
  15. 15 M. Ohishi, M. Shiraishi, R. Nouchi, T. Nozaki, T. Shinjo, and Y. Suzuki, Jpn. J. Appl. Phys. 46, L605 (2007).
  16. 16 D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. Lett. 103, 146801 (2009).
  17. 17 V. K. Dugaev, E. Y. Sherman, and J. Barnaś, Phys. Rev. B 83, 085306 (2011).
  18. 18 T. Yoshitake, A. Nagano, M. Itakura, N. Kuwano, T. Hara, and K. Nagayama, Jpn. J. Appl. Phys. 46, L936 (2007).
  19. 19 T. Yoshitake, Y. Nakagawa, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, K. Sumitani, Y. Agawa, and K. Nagayama, Jpn. J. Appl. Phys. 49, 015503 (2010).
  20. 20 S. Ohmagari, T. Yoshitake, A. Nagano, R. Ohtani, H. Setoyama, E. Kobayashi, T. Hara, and K. Nagayama, Jpn. J. Appl. Phys. 49, 031302 (2010).
  21. 21 S. Ohmagari and T. Yoshitake, Jpn. J. Appl. Phys. 51, 090123 (2012).
  22. 22 Y. Katamune, S. Ohmagari, S. Al-Riyami, S. Takagi, M. Shaban, and T. Yoshitake, Jpn. J. Appl. Phys. 52, 065801 (2013).
  23. 23 S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, Appl. Phys. Lett. 79, 1441 (2001).
  24. 24 C. Popov, W. Kulisch, S. Boycheva, K. Yamamoto, G. Ceccone, and Y. Koga, Diamond Relat. Mater. 13, 2017 (2004).
  25. 25 T. Yoshitake, T. Ogawa, D. Nakagauchi, D. Hara, M. Itakura, N. Kuwano, and Y. Tomokiyo, Appl. Phys. Lett. 89, 253110 (2006).
  26. 26 K. Takeda, T. Yoshitake, D. Nakagauchi, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, and K. Nagayama, Jpn. J. Appl. Phys. 46, 7846 (2007).
  27. 27 K. Takeda, T. Yoshitake, Y. Sakamoto, T. Ogawa, D. Hara, M. Itakura, N. Kuwano, T. Kajiwara, and K. Nagayama, Appl. Phys. Express 1, 021302 (2008).
  28. 28 S. Hirakawa, T. Sonoda, K. Sakai, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 50, 08JD06 (2011).
  29. 29 K. Sakai, T. Sonoda, S. Hirakawa, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 51, 028004 (2012).
  30. 30 K. Sakai, Y. Noda, K. Takeda, M. Takeda, and T. Yoshitake, Phys. Status Solidi C 10, 1862 (2013).
  31. 31 K. Sakai, Y. Noda, D. Tsumagari, H. Deguchi, K. Takeda, and T. Yoshitake, Phys. Status Solidi A 211, 323 (2014).
  32. 32 K. Sakai, Y. Noda, T. Daio, D. Tsumagari, A. Tominaga, K. Takeda, and T. Yoshitake, Jpn. J. Appl. Phys. 53, 02BC15 (2014).
  33. 33 K. Sakai, Y. Asai, M. Takeda, K. Ishibashi, Y. Noda, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011503 (2015).
  34. 34 K. Sakai, Y. Asai, Y. Noda, T. Daio, A. Tominaga, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011502 (2015).
  35. 35 Y. Asai, K. Sakai, K. Ishibashi, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011501 (2015).
  36. 36 Y. Asai, K. Sakai, K. Ishibashi, K. Takeda, and T. Yoshitake, JJAP Conf. Proc. 3, 011504 (2015).
  37. 37 K. Ishibashi, K. Nakashima, K. Sakai, and T. Yoshitake, APS Conf. Proc., 2015, GT1.00151.