JSAP Journals

JJAP Conference Proceedings

JJAP Conf. Proc. 6, 011101 (2017) doi:10.7567/JJAPCP.6.011101

High-pressure equation of state of cesium fluoride to 120 GPa

Daniel Sneed1,2, Michael Pravica1,2, Eunja Kim1, Philippe F. Weck3, Michael Pravica1,2, Eunja Kim1, Philippe F. Weck3

  1. 1Department of Physics and Astronomy, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada 89154-4002, U.S.A.
  2. 2High Pressure Science and Engineering Center (HiPSEC), University of Nevada Las Vegas (UNLV), Las Vegas, Nevada 89154-4002, U.S.A.
  3. 3Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, U.S.A.
  4. 1Department of Physics and Astronomy, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada 89154-4002, U.S.A.
  5. 2High Pressure Science and Engineering Center (HiPSEC), University of Nevada Las Vegas (UNLV), Las Vegas, Nevada 89154-4002, U.S.A.
  6. 3Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, U.S.A.
  • Received October 23, 2016
  • PDF (558 KB) |

Abstract

We have performed a high pressure synchrotron X-ray diffraction study of the ionic salt, cesium fluoride (CsF), up to 120 GPa. We observed the B1 → B2 phase transition near 5 GPa as previously reported. Beyond this pressure, no phase transitions were determined to have occurred up to the highest pressure studied. Unit cell data were calculated from the known B2 (CsCl) structure for all of the pressures studied above 5 GPa, and an equation of state (EOS) was fit to the data using a 3rd order Birch–Murnaghan equation in this phase. Density Functional Theory (DFT) was also employed to compute an EOS for comparison purposes. Our experimental results agreed very well with both sets of the predicted EOS.

Creative Commons License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  1. 1 M. Miao, Nat. Chem. 5, 846 (2013).
  2. 2 Q. Zhu, A. Oganov, and Q. Zeng, Sci. Rep. 5, 7875 (2015).
  3. 3 C. Pistorius and H. Snyman, Z. Phys. Chem. Neue Folge 43, 1 (1964).
  4. 4 C. Weir and G. Piermarini, J. Res. Nat. Bureau Standards 68A, 105 (1964).
  5. 5 M. Pagannone and C. Panattoni, Corsi e Seminari di Chimica, Consiglio Nazionale delle Ricerche e Fondazione F. Giordani 5, 111 (1967).
  6. 6 S. V. Karpenko, A. P. Savintsev, and A. I. Temrokov, Dokl. Phys. 53, 128 (2008).
  7. 7 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
  8. 8 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
  9. 9 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
  10. 10 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  11. 11 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
  12. 12 F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
  13. 13 F. Birch, Phys. Rev. 71, 809 (1947).
  14. 14 S. S. Batsanov, Inorg. Mater. 45, 457 (2009).
  15. 1 M. Miao, Nat. Chem. 5, 846 (2013).
  16. 2 Q. Zhu, A. Oganov, and Q. Zeng, Sci. Rep. 5, 7875 (2015).
  17. 3 C. Pistorius and H. Snyman, Z. Phys. Chem. Neue Folge 43, 1 (1964).
  18. 4 C. Weir and G. Piermarini, J. Res. Nat. Bureau Standards 68A, 105 (1964).
  19. 5 M. Pagannone and C. Panattoni, Corsi e Seminari di Chimica, Consiglio Nazionale delle Ricerche e Fondazione F. Giordani 5, 111 (1967).
  20. 6 S. V. Karpenko, A. P. Savintsev, and A. I. Temrokov, Dokl. Phys. 53, 128 (2008).
  21. 7 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
  22. 8 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
  23. 9 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
  24. 10 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  25. 11 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
  26. 12 F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
  27. 13 F. Birch, Phys. Rev. 71, 809 (1947).
  28. 14 S. S. Batsanov, Inorg. Mater. 45, 457 (2009).